Fibre ottiche al mare

La prossima volta che andate in piscina o al mare potete fare un esperimento che spiega le fibre ottiche. Guardando direttamente in su, si vede attraverso l’acqua. Guardando più di sbieco la superficie, c’è un punto dopo il quale diventa come uno specchio. Sembra una cavolata, ma apre una finestra su un sacco di fisica complicata.

Continua a leggere

Bastano due equazioni per andare sulla Luna

“Andare sulla Luna sembrerà difficile ( credo ne abbia parlato qualcuno), ma in realtà tutto quel che serve sono due semplici regole. Entrambe scoperte dal famoso fisico e stronzo Isaac Newton, che compirà gli anni durante le vacanze… ad un certo punto.

Che bell’omino festivo! credit: csamuel.org

La prima regola è la maestosa a=F/m (probabilmente meglio nota come F=ma). Vuol semplicemente dire che, dividendo l’intensità di una forza (F) che spinge su un oggetto per la massa (m) dell’oggetto, si ottiene di quanto lo si accelera (a). È una formula che vale per tutto, ma in particolare ci dirà come si muove il nostro razzo, quindi è abbastanza importante per il nostro viaggio.

A proposito di razzi, questa formula sta dietro a come i razzi si muovono. La propulsione a razzo, infatti, si basa su quella strana faccenda della “reazione uguale e contraria”, che probabilmente avete sentito.

Se gonfiate un palloncino e lo lasciate andare, vola via facendo un rumore buffo perché l’aria all’interno viene spinta fuori dalla pressione. Però, se consideriamo il palloncino e l’aria assieme, non ci sono nuove forze che iniziano ad agire quando lasciamo la presa. Insomma F=0. Siccome il palloncino spinge l’aria fuori, dev’esserci una forza altrettanto intensa (uguale) che spinge dall’altra parte (contraria) che spinge dall’aria al palloncino. I razzi funzionano uguale, solo che hanno un sacco di tecnologia figa per farlo in maniera più efficiente.

CC-BY-ND mfrascella/flickr

L’altra equazione che Newton ci regala per il viaggio è quella per calcolare la forza di gravità. Che è stato un colpo di genio totale. Ed è abbastanza importante per noi, perché la gravità è il grosso della forza che ci troveremo davanti nello spazio. Quella della Terra, che ancora il razzo al suolo o lo strattona giù dal cielo, e quella della Luna che lo tira a destinazione. Conoscendo come funziona la gravità possiamo iniziare a tracciare la nostra rotta.

Facile no?

Mica tanto: gli astronauti—piloti di caccia con diplomi da ingegneri!—devono seguire corsi apposta per imparare a pilotare le navette spaziali. Prima ancora di arrivare a quello, dovremo costruire la navetta. Dovrà avere abbastanza spinta da sfuggire alla Terra, ma essere abbastanza solida da non esplodere mentre lo fa, e riportarci indietro tutti interi e non abbrustoliti.

Per questo Newton non è andato nello spazio.

Il cuore dei viaggi spaziali è comunque nelle sue equazioni. Tutta la ricerca di tutte quelle persone intelligentissime nelle agenzie spaziali: è tutta per migliorare come usiamo queste due semplici regole.

Grazie e buon compleanno, genio insopportabile!

E buon Natale a tutti!
Per saperne di più
  •  Se vi capita, guardatevi il terzo episodio di Cosmos: non avete sentito spiegare il lavoro di Newton sulla gravità se non ve l’ha raccontato Neil deGrasse Tyson.
  • Se vogliamo andare più lontano, invece, serve ben altro
  • La tecologia spaziale potrebbe non aver più bisogno di Newton tra un po’. Ma è tutto ancora molto vago, e francamente piuttosto strano.

 

Foto copertina: CC0 27707/pixabay

Quanto manca? Il lungo viaggio verso marte

Siamo davvero così vicini al grande passo verso Marte? Recentemente, il successo solo parziale dell’atterraggio di Schiaparelli è stato un severo richiamo a quanto il Pianeta Rosso sia una realmente una destinazione difficilissima.

Ironicamente, nelle settimane prima dell’evento, molta dell’attenzione era concentrata su piani per portare persone su Marte. Una delle ragioni era un ottimistico articolo di Barack Obama sul sito di CNN, in cui anticipava che la NASA vorrebbe portare astronauti su Marte, e riportarli a casa in sicurezza, nei prossimi 20-25 anni e “un giorno rimanere per tempi più lunghi (l’ESA si è data scadenze simili).

L’altra ragione era un pubblicizzatissimo discorso di Elon Musk—tra le tante cose, fondatore e presidente di SpaceX, la più grande compagnia privata di trasporti spaziali—alla International Astronautical Conference: un’ambiziosa proposta per trasformare l’umanità in una specie interplanetaria. Cominciando da Marte in una decina d’anni “se tutto va benissimo”, dice.

Tuttavia, una missione con equipaggio verso Marte presenta un’enormità di ostacoli, a cominciare dal fatto che Marte è lontano—molto molto lontano.

Il primo problema sono i razzi. Le capsule spaziali che trasportano persone sono grandi e pesanti: per l’atterraggio sulla Luna si usò il Saturn V, il più grande e potente razzo mai costruito. Marte è più di cento volte più lontano della Luna, e i razzi che abbiamo proprio non ce la fanno.

In un’intervista del 2015 con Neil deGrasse Tyson, l’astronauta Chris Hadfield ha paragonato pianificare un viaggio su Marte con la nostra tecnologia a pianificare voli di linea per l’Australia negli anni Venti. Al tempo, anche solo attraversare l’Atlantico—un viaggio lungo meno di metà—era un’impresa storica. Per diventare quotidiano, il trasporto aereo transoceanico doveva aspettare il passaggio dai motori ad elica a quelli a reazione. Secondo Hadfield, ai viaggi spaziali serve una rivoluzione altrettanto radicale per portarci su Marte.

La NASA, l’ESA e SpaceX stanno tutte sviluppando nuovi motori e razzi per carichi pesanti, ma nessuno è ancora pronto. Il razzo Falcon Heavy di SpaceX dovrebbe finalmente arrivare nel 2017, lo Space Launch System della NASA dovrebbe essere lanciato nel 2018, dopo innumerevoli critiche, ritardi e problemi di budget.

Poi c’è il problema dei mesi di viaggio nello spazio, anche assumendo che riusciamo a sparare un veicolo verso Marte a velocità ragionevoli. Finora astronauti e cosmonauti hanno viaggiato solo qualche giorno in piccolissime capsule (come la Soyuz, che contiene a malapena le tre persone dell’equipaggio), che indubbiamente non possono ospitare persone per mesi.

Samantha Cristoforetti all’interno di una capsula Soyuz durante degli esami a terra. via Twitter

In questo campo, la NASA è decisamente in vantaggio: il veicolo Orion—che stanno testando—è progettato proprio per viaggi interplanetari. SpaceX, invece, è appena entrata in campo: una loro capsula dovrebbe portare per la prima volta astronauti sulla Stazione Spaziale Internazionale nel tardo 2017.

Anche se mettessimo persone su Marte, avrebbero bisogno di un qualche genere di insediamento. Nessuno si è mai accampato su un altro pianeta. Mai. Da nessuna parte. Ci sono progetti per unità abitative per astronauti, ma non siamo ancora alla fase di test. Sia la NASA che l’ESA hanno piani per basi lunari, in parte come test per la colonizzazione interplanetaria, ma potrebbe volerci un po’.

Ma la tecnologia non è l’unica sfida: cosa mangeranno i coloni marziani? Come gestiranno situazioni di emergenza se il dialogo con la base ha un ritardo di 13 minuti? Subiranno danni cerebrali dal viaggio?

Insomma, non siamo proprio sul punto di metter piede su Marte.

Dobbiamo ancora imparare e testare, se non addirittura costruire, molto. Molti dei passi che dovremo fare non sono mai stati fatti prima. Ma questo non vuol dire che siano impossibili.

Dopotutto, come ha scritto Obama, questa impresa è frutto di “curiosità ed esplorazione, innovazione ed ingegno, [di] spingere i limiti di quello che è possibile e farlo prima di chiunque altro”.

Se qualcuno può farsi carico di questa formidabile impresa, quelli sono la NASA, l’ESA e SpaceX. Finché continueranno ad avere un supporto adeguato e ad attrarre tante delle nostre menti più brillanti, sarà solo questione di tempo.

Aspettiamo i passettini della scienza, mentre non vediamo l’ora di vedere le nostre impronte su Marte!
(c) The Munich Eye, all rights reserved.
Foto copertina: NASA/MSFC, via Wikimedia Commons.

 

Come funziona un computer quantistico

Probabilmente avete già sentito parlare di computer quantistici. Il vantaggio di leggere la spiegazione qui invece che sentirla da persone molto più affascinanti di me è che non ci sono occhi blu in cui perdersi.

Come dice giustamente il buon Justin, i computer quantistici non usano i normali bit, niente lunghe serie di 0 e 1. Al loro posto usano degli oggetti chiamati quantum bit, o qubit, che possono trovarsi in stati di sovrapposizione, possono essere 1 e 0 contemporaneamente.

L’idea è un po’ la stessa del gatto di Schrödinger che, finché non viene osservato, resta sia vivo che morto.

Il Prof. Andrea Morello dell’Università del New South Wales (Australia), spiega in un’intervista su Veritasium uno dei grandi vantaggi di usare i qubit: immagazzinare informazione in modo efficiente.

Due bit, dice Morello, possono avere quattro combinazioni di valori: 00, 01, 10, 11 e per descriverli sono necessari—spoiler—due bit (il valore del primo e quello del secondo).

Anche due qubit hanno quattro combinazioni. Se andassimo a misurarli, però, li troveremmo ogni volta un diverso in una diversa, e la probabilità di ognuna dipende da come abbiamo costruito la sovrapposizione. Per descrivere la sovrapposizione, quindi, ci serve sapere ciascuna delle probabilità, quindi 4 numeri*.

Sintetizzando, la quantità di informazione nei bit normali aumenta in proporzione a quanti ne usiamo, mentre quella nei qubit aumenta esponenzialmente. Mica male.

Un altro vantaggio dei computer quantistici è che possono manipolare la sovrapposizione stessa, senza misurare i qubit fino alla fine del calcolo. In questo modo possono usare tutte le combinazioni contemporaneamente e portare avanti molte operazioni in parallelo.

Questa abilità è inutile per gli usi quotidiani, ma aiuterebbe molto alcuni calcoli complessi, ad esempio, per capire come si ripiegano le proteine, che è fondamentale per scoprire nuove medicine. Per farlo, però, bisogna calcolare una dopo l’altra tutte le miriadi di combinazioni possibili, che è difficilissimo. I computer quantistici potrebbero simulare tutte le configurazioni in parallelo, sveltendo di molto l’operazione.

In teoria sappiamo praticamente tutto: come manipolare i qubit, che struttura devono avere i circuiti, come devono essere programmati i computer. Costruirli davvero, mettere insieme più di un paio di qubit sembra ancora molto molto complicato (nonostante notevoli recenti passi avanti).

Almeno per ora, tra il dire e il fare…

 

Credit: stefanieshank.tumblr.com

 

*Nota per attenti alla matematica:

Avrete notato che le probabilità devono sommare a 1, perciò si eliminerebbe uno dei numeri necessari per descrivere la sovrapposizione. Non me lo sono dimenticato, ma ho saltato l’argomento per brevità, semplicità e coerenza con quello che dice Morello nell’intervista. Resta il fatto che l’informazione contenuta nei qubit è esponenziale nel loro numero che sia 2^n o 2^n -1 bit.

 

Foto copertina: CC0 Wokandapix/pixabay.com

Il felice incidente che apre la strada per incredibili batterie del futuro

Chi non vorrebbe un telefono sottile, che rimane carico per giorni e mantiene la durata della batteria per anni? Ma le batterie grosse e che non durano nel tempo zavorrano molte tecnologie, al di là dell’elettronica quotidiana, dalle auto elettriche alle centrali fotovoltaiche ed eoliche.

La nanotecnologia ha mostrato sprazzi di una soluzione: le batterie a nanofili, tuttavia ci sono ancora grossi ostacoli da superare. Anzitutto, questi apparecchi futuristici sono ancora molto fragili e inaffidabili. Ma, grazie al lavoro di Mya Le Thai—dottoranda nel laboratorio del Prof Reginald Penner all’Università della California-Irvine—ora abbiamo un metodo promettente per farle durare virtualmente una vita.

Il nocciolo del funzionamento di una batteria è usare reazioni chimiche per trasferire elettricità tra pezzi di materiale conduttore (gli elettrodi) e una soluzione elettrolitica (essenzialmente, un liquido in cui sono disciolti dei sali). Al posto degli elettrodi, le batterie ai nanofili usano migliaia di fili conduttori, ognuno più sottile del filo di una ragnatela. Perciò le reazioni chimiche hanno un sacco di posto a disposizione, anche in piccole batterie. “Il vantaggio principale dei nanofili per lo stoccaggio dell’energia è l’incredibile rapporto superficie:volume, che permette di ottenere un’altissima potenza (ovvero corrente)”, spiega Penner.

Ma, aggiunge, questa potenza ha un costo: “Questa enorme superficie amplifica anche l’effetto di tutti quei processi chimici che erodono la superficie dei fili”. Infatti le reazioni chimiche che danno energia alla batteria sono le stesse che ne consumano gli elettrodi. Così una batteria può passare tra essere scarica e carica solo un certo numero di volte (qualche centinaio di solito) prima di perdere capacità. Che è poi il motivo per cui, ad esempio, i cellulari restano carichi sempre meno man mano che invecchiano.

Per i nanofili è anche peggio: non solo sono più soggetti alla corrosione, come diceva Penner, ma l’elettricità che gli passa attraverso li sforza molto più di quanto farebbe con massicci elettrodi. Perciò, dopo qualche migliaio di cicli di carica-scarica, i fili sono consumati e corrosi e si spaccano. Quando succede, la batteria è completamente inutilizzabile.

Thai stava lavorando su nanofili d’oro rivestiti di ossido per fare dei condensatori, aggeggi in un certo modo simili a batterie con due poli positivi, che immagazzinano carica elettrica senza usare reazioni chimiche. Perciò possono essere caricati e scaricati molto rapidamente. Con sua (e di tutti) sorpresa, gli apparecchi con cui lavorava Thai duravano centinaia di volte più a lungo del normale. Racconta Penner: “Eravamo entrambi esterrefatti quando ha iniziato a provarli e la capacità non è diminuita dopo 10mila cicli, poi 20mila, e infine (settimane dopo) 100mila cicli. A quel punto abbiamo smesso, sebbene i condensatori non avessero mostrato nessuna perdita di carica. Magari l’avessimo programmato!”

I ricercatori hanno riportato la loro scoperta in un articolo pubblicato su ACS Energy Letters. La chiave sembra fosse usare un gel invece di liquido per la soluzione elettrolitica, ma loro stessi ammettono di non avere le idee molto chiare sul perché. Secondo loro, il gel ridurrebbe lo stress meccanico sui fili e, allo stesso tempo, preverrebbe la corrosione: “Pensiamo faccia entrambe le cose”, dice Penner, “il gel ammorbidisce o plastifica il rivestimento, prevenendo le rotture, ma sembra anche rallentare la corrosione in un modo che non abbiamo ancora ben capito”.

Secono Penner, servirà ancora molto lavoro per valutare la fattibilità di batterie basate sui nanofili. Soprattutto, non è ancora chiaro come collegare la miriade di microscopici fili ai due poli della batteria. E usare fili rivestiti, come hanno fatto loro, va bene in laboratorio ma non sarebbe fattibile a livello industriale.

Ciononostante, lo studio mostra che i nanofili possono davvero essere la strada per incredibili batterie leggere e durevoli!

 

(c) The Munich Eye, all rights reserved.

Foto copertina: Steve Zylius/UCI

Gli incredibili polimagneti

Con le calamite possiamo cose che sembrano magiche: spostare oggetti a distanza, fare in modo che due oggetti non si tocchino, anche stringendoli fortissimo.

Sono anche intuitivi: ognuno ha un polo nord e un polo sud, gli opposti si attraggono, mentre poli uguali si respingono. Più in dettaglio, c’è un campo magnetico che collega ogni polo nord al polo sud più vicino, solitamente girando intorno alla calamita.

Un magnete ideale e il suo campo magnetico. CC-BY-SA Geek3, via Commons.

Il campo si indebolisce allontanandosi dal polo, ma l’orientamento resta lo stesso, come si vede facilmente mettendo una calamita sotto un foglio con sopra limatura di ferro.

Limatura di ferro che si allinea al campo magnetico di una calamita.

Quindi due magneti o si attraggono o si respingono, più o meno intensamente, ma sempre allo stesso modo. O almeno così pensavo prima di essere  scioccato da questo video di SmarterEveryDay.

In pratica, c’è un’azienda (Correlated Magnets) che “stampa” piccolissimi magneti (magnetic pixel, o maxel) orientati in vario modo sulla stessa faccia di una calamita, o polimagnete. Quindi il campo magnetico resta sulla stesso lato invece che girare tutto intorno alla calamita, e stampando poli opposti a varie distanze si può regolare il comportamento del polimagnete.

Nel video (dal minuto 5:47), per esempio, mostrano coppie di polimagneti che si attraggono fino ad una certa distanza, poi si respingono, comportandosi come molle. Addirittura ce ne sono alcuni che si attraggono, poi si respingono, poi si attaccano e staccano ruotandoli. WOW!

I polimagneti sono pazzeschi da vedere, ma hanno anche tantissime applicazioni: non avendo parti meccaniche, non si usurano; in più non interferiscono con oggetti elettronici o magnetici (tipo carte bancomat) perché il loro campo magnetico è contenuto.

Correlated Magnets stampa magneti fatti come volete (SmarterEveryDay se n’è fatto fare uno col suo logo, si vede verso la fine del video). Non ho capito come fanno e loro non lo spiegano (segreto industriale suppongo), ma è incredibile.

 

Foto copertina: ferrofluid still 007, CC-BY-NC-ND maurizio mucciola, via Flickr. Some rights reserved.

Come vediamo noi e come vedono i computer

Vi sarà bastato un dettaglio per capire che la foto di copertina è di un’auto. I computer non sono altrettanto capaci. Saranno pure capaci di batterci a Go, ma le macchine hanno difficoltà a distinguere gli oggetti nelle immagini.

Secondo i ricercatori del Weizmann Institute in Israele, il nostro vantaggio è che il cervello coglie singoli dettagli e dà un senso al resto.

I ricercatori hanno messo alla prova questa abilità mostrando diverse foto, spesso sgranate, a migliaia di volontari. Sorprendentemente, dice Shimon Ullman, “Se un’immagine minima perde anche pochissimo dettaglio, tutti improvvisamente perdevano l’abilità di riconoscere l’oggetto”. Nelle foto qua sotto, per esempio, la percentuale passa da oltre il 70% ad a malapena il 20%.

Piccole differenze tra le immagini della riga sopra e quella sotto cambiano moltissimo la possibilità di riconoscere cosa rappresentano (i numeri). Credit: Weizmann Institute

Secondo i ricercatori, questo significa che c’è una quantità minima di informazione che un’immagine deve contenere perché un cervello possa capire di cosa si tratta.

Meglio capiamo come funzionano i complicati processi visivi del cervello, migliori sistemi di visione artificiale possiamo progettare.

Ad esempio, migliorando la vista nelle auto che si guidano da sole.

 

Foto copertina: CC0 Alain Willenmart, via unsplash

La teoria non serve

“Bravi, ma cosa me ne faccio?” Questa domanda assedia noi teorici (e magari ve la siete fatta anche voi ogni tanto leggendo qui), ed è rispuntata con le onde gravitazionali. Ma non siamo affatto bravi a rispondere.

La ricerca applicata serve: i transistor fanno funzionare il mio telefonino, con gli antibiotici non muoio di raffreddore, pastorizzando il latte si conserva più a lungo. Ma le onde gravitazionali? Perché spendere miliardi e impiegare migliaia di persone per trovarle?

Per gli idealisti, la ricerca di base amplia innalzando l’intelletto umano. Un nobile proposito che basta a motivare molti scienziati. Che poi pensano debba bastare anche agli altri.

Ma la risposta è che quel lavoro, ora, nella pratica, non serve. Ma poi servirà.

Quando J.J. Thomson ha scoperto l’elettrone a fine Ottocento non avrebbe neanche potuto sognare quello che ci abbiamo fatto (per citare The West Wing). Ma grazie alla sua scoperta abbiamo capito come fare transistor, laptop, cellulari, internet e tutta l’elettronica, aprendo la strada a nuova scienza. Comprese le onde gravitazionali. E medicinali migliori. E lo sbarco sulla Luna. Senza, staremmo ancora qua coi calcolatori meccanici e il loro fascino retro (ma senza internet).

Con la teoria capiamo l’universo. Se non sappiamo cosa abbiamo davanti, non potremo mai sfruttarlo nelle applicazioni. Matt O’Dowd, su PBS Space Time, ha dato una gran risposta ad un commentatore secondo cui le onde gravitazionali sono inutili se non risolvono problemi pratici, tipo il prezzo della benzina:

Apprezzerò l’inutile bellezza di questa scoperta anche dopo che mi avrà permesso di guidare la mia astronave antigravitazionale a inflatoni verso le stelle. A quel punto non mi preoccuperà il prezzo della benzina.

Micdrop.

Aggiornamento: Anche il comitato del Nobel pensa che le scoperte teoriche servono. Il premio per la fisica 2016, infatti, è andato a David Thouless, Duncan Haldane, e Michael Kosterlitz “semplicemente” perché le loro scoperte stanno ispirando moltissime ricerche su nuovi materiali e computer quantistici.

Foto copertina: Blackboard Lie Algebras, CC-BY-NC ☃, via Flickr. Some rights reserved.

Salto di livello per i computer quantistici

Come il celebre gatto di Schrödinger, anche i computer quantistici erano sia tra noi che no allo stesso tempo. Sapevamo tutto della teoria, ma non riuscivamo a costruirli. Ma questo potrebbe cambiare presto.

I ricercatori della University of New South Wales, in Australia hanno creato il primo gate logico in silicio per qubit. In altre parole, il primo pezzettino di un processore quantistico (i qubit sono l’equivalente quantistico dei nostri bit).

Il fatto che sia in silicio “rende la costruzione di un computer quantistico molto più fattibile”, ha detto Andrew Dzurak, coordinatore del gruppo, “perché è basato sulla stessa tecnologia produttiva dell’attuale industria elettronica”.

I computer quantistici sono enormemente superiori quando si tratta di fare molti calcoli in una volta, ma non sempre. Per gli usi quotidiani i computer classici sono probabilmente meglio.

Ma la ricerca di medicinali e materiali nuovi, per fare due esempi, farà passi da gigante.

Foto: Vintage Technology, CC-BY-NC Jeremy Brooks, via Flickr. Some rights reserved.