Come funziona un computer quantistico

Probabilmente avete già sentito parlare di computer quantistici. Il vantaggio di leggere la spiegazione qui invece che sentirla da persone molto più affascinanti di me è che non ci sono occhi blu in cui perdersi.

Come dice giustamente il buon Justin, i computer quantistici non usano i normali bit, niente lunghe serie di 0 e 1. Al loro posto usano degli oggetti chiamati quantum bit, o qubit, che possono trovarsi in stati di sovrapposizione, possono essere 1 e 0 contemporaneamente.

L’idea è un po’ la stessa del gatto di Schrödinger che, finché non viene osservato, resta sia vivo che morto.

Il Prof. Andrea Morello dell’Università del New South Wales (Australia), spiega in un’intervista su Veritasium uno dei grandi vantaggi di usare i qubit: immagazzinare informazione in modo efficiente.

Due bit, dice Morello, possono avere quattro combinazioni di valori: 00, 01, 10, 11 e per descriverli sono necessari—spoiler—due bit (il valore del primo e quello del secondo).

Anche due qubit hanno quattro combinazioni. Se andassimo a misurarli, però, li troveremmo ogni volta un diverso in una diversa, e la probabilità di ognuna dipende da come abbiamo costruito la sovrapposizione. Per descrivere la sovrapposizione, quindi, ci serve sapere ciascuna delle probabilità, quindi 4 numeri*.

Sintetizzando, la quantità di informazione nei bit normali aumenta in proporzione a quanti ne usiamo, mentre quella nei qubit aumenta esponenzialmente. Mica male.

Un altro vantaggio dei computer quantistici è che possono manipolare la sovrapposizione stessa, senza misurare i qubit fino alla fine del calcolo. In questo modo possono usare tutte le combinazioni contemporaneamente e portare avanti molte operazioni in parallelo.

Questa abilità è inutile per gli usi quotidiani, ma aiuterebbe molto alcuni calcoli complessi, ad esempio, per capire come si ripiegano le proteine, che è fondamentale per scoprire nuove medicine. Per farlo, però, bisogna calcolare una dopo l’altra tutte le miriadi di combinazioni possibili, che è difficilissimo. I computer quantistici potrebbero simulare tutte le configurazioni in parallelo, sveltendo di molto l’operazione.

In teoria sappiamo praticamente tutto: come manipolare i qubit, che struttura devono avere i circuiti, come devono essere programmati i computer. Costruirli davvero, mettere insieme più di un paio di qubit sembra ancora molto molto complicato (nonostante notevoli recenti passi avanti).

Almeno per ora, tra il dire e il fare…

 

Credit: stefanieshank.tumblr.com

 

*Nota per attenti alla matematica:

Avrete notato che le probabilità devono sommare a 1, perciò si eliminerebbe uno dei numeri necessari per descrivere la sovrapposizione. Non me lo sono dimenticato, ma ho saltato l’argomento per brevità, semplicità e coerenza con quello che dice Morello nell’intervista. Resta il fatto che l’informazione contenuta nei qubit è esponenziale nel loro numero che sia 2^n o 2^n -1 bit.

 

Foto copertina: CC0 Wokandapix/pixabay.com

Con la citizen science tutti aiutiamo la ricerca

Nel 2000 ho fatto parte del più grande progetto di calcolo del mondo, aiutando a cercare segnali di vita intelligente nell’universo. Stavo iniziando il liceo. Tutto quello che ho dovuto fare è stato scaricare il salvaschermo SETI@home.

Scaricando il salvaschermo, mi sono preso un pacchetto di dati, che il mio computer analizzava quando non lo usavo. I dati venivano dal radiotelescopio di Arecibo (Puerto Rico), che scandaglia continuamente il cielo alla ricerca di possibili segnali da civiltà aliene, ma produce dati più velocemente di quanto si possano analizzare. Perciò i ricercatori hanno creato il salvaschermo, ottenendo l’aiuto di migliaia di nuovi computer.

Niente alieni. Ma il progetto continua ancora, con più di 120 mila utenti attivi.

La schermata di SETI@home. Credit: NASA

SETI@home è solo un esempio di citizen science: progetti scientifici che escono dai laboratori e si fanno aiutare dal grande pubblico. Analizzare le montagne di dati di Arecibo, infatti, non richiede competenze specifiche, ma solo tantissime persone e tempo.

Altri problemi, invece, sono troppo complessi anche per i migliori computer.

Ad esempio, sappiamo (in teoria) come si ripiegano le proteine, ma spesso le molecole sono troppo grandi e complicate da simulare esattamente. D’altra parte, però, anche differenze minime nella struttura possono avere grandi effetti sulla loro funzionalità.

Serve una soluzione creativa. Fortunatamente, gli umani ne trovano più dei computer. Per questo l’Università di Washington ha chiesto aiuto al pubblico, e l’ha fatto con lo strumento più coinvolgente possibile: un videogioco.

Sì chiama foldit ed è scaricabile gratuitamente dal sito dell’università. Lo scopo è ripiegare proteine virtuali, che però seguono le stesse regole di quelle reali. Più stabile è la conformazione che si trova più punti si fanno. Nel 2012, i partecipanti hanno trovato in poche settimane un indizio chiave per capire la struttura di un enzima coinvolto nella riproduzione dell’HIV, con cui gli scienziati si scontravano da anni.

Una schermata di Quantum Moves

Più di recente si è parlato di un nuovo gioco: Quantum Moves. Sviluppato in Danimarca, è disponibile per Windows, Mac, iOS e Android. Lo scopo del gioco è trasportare una specie di strano liquido da un punto all’altro sullo schermo. In realtà, stiamo facendo il lavoro di un tipo di computer quantistico, che calcola spostando singoli atomi da un posto ad un altro. Per giocare, però, non serve sapere nulla di meccanica quantistica: basta uno smartphone e pazienza.

Gli scienziati hanno già pubblicato sulla prestigiosa rivista Nature che i giocatori hanno risolto alcuni dei problemi più efficientemente dei migliori algoritmi, fornendo indicazioni fondamentali per migliorarli.

La citizen science, quindi, crea non solo risultati concreti, ma anche entusiasmo per la ricerca, sui temi più disparati. Per prendervi un posto nella prossima grande scoperta basta una veloce ricerca su google!

 

Foto copertina: CC0 pixabay.com