Il mondo allo specchio dell’antimateria

Qua e là in libri, film o fumetti ogni tanto spunta la misteriosa antimateria. Spesso, si sta sul vago riguardo cosa sia e cosa faccia, rendendola la versione “scientificosa” della magia.

Una creatura di “antimateria” spunta in un vecchio episodio di Doctor Who. credit: doctorwhofromthestart.wordpress.com

Ma l’antimateria esiste: la conosciamo così bene da sfruttarla anche in medicina. La sua scoperta è uno dei più grandi successi della fisica teorica. Allo stesso tempo, però, ci ha creato un bel grattacapo.

Tra gli anni Venti e Trenta, i fisici cercavano di mettere d'accordo la Relatività Speciale e la Meccanica Quantistica. L’unico modo per farle funzionare era introdurre una nuova, strana materia, uguale alla materia normale, ma al contrario. Erano come due persone allo specchio. Sono uguali e si muovono allo stesso modo, ma se una alza la mano sinistra, l’altra alza la destra. In termini di particelle, se una ha carica positiva, o spin in su, o altro, l’altra ha carica negativa, o spin in giù, o comunque tutto all’opposto. Era più del riflesso della materia, era quasi il suo gemello malvagio: la chiamarono antimateria.

credit: a113animation.com

Il nome viene da dove pensate che venga: dall’essere il contrario della materia. Come tutti gli opposti, quando materia ed antimateria si incontrano, si annullano. Spariscono in un istante, trasformandosi in pura energia—un processo chiamato annichilazione.

L’antimateria non era solo un trucco matematico: ben presto gli scienziati avvistarono le prime antiparticelle. Trovare l’antimateria fu un successo senza precedenti: la teoria aveva tracciato la via per scoprire un universo mai visto.

Ma perché era rimasto invisibile? Perché l’universo è di materia? Perché esiste? Non avrebbe dovuto annichilarsi* con un anti-universo uguale e contrario? Le leggi fisiche sono diversa per l’antimateria?

L’esperimento Alpha al CERN prova a rispondere almeno a quest’ultima domanda. Dopo essere riusciti a creare ed isolare degli atomi di anti-idrogeno—con anti-protoni, anti-elettroni e tutto—gli scienziati li hanno stimolati con luce laser. La reazione che hanno visto dall’anti-idrogeno è esattamente uguale a quella che conosciamo per l’idrogeno. Le leggi sembrano uguali anche per l’anti-materia.

Probabilmente siamo tutti di materia perché, dopo il Big Bang, ce n’era giusto un pochino di più. Da dove venga il microscopico equilibrio che ha regalato l’universo alla materia resta ancora uno dei più grandi misteri della scienza.

Una rappresentazione dello squilibrio materia-antimateria al Deutsches Museum di Monaco (Germania). La tanica di sabbia nera rappresenta l’antimateria all’origine dell’universo, quella bianca la materia—sono alte circa un metro, quella bianca contiene un singolo granello in più. credit: scilogs.spektrum.de

 

*Suona strano, ma quello è il verbo: materia e antimateria si annichilano.

Foto copertina: CC0 Julia Schwab/pixabay

Uno spezzatino di (quasi-)particelle

Ogni elettrone ha uno spin, una specie di bussola interna, che (semplificando un sacco) punta “su” o “giù”. Sparando dei neutroni contro un materiale e vedendo come rimbalzano, si può capire come interagiscono con lo spin degli elettroni e, quindi, come sono orientati gli spin.

In un esperimento con un particolare materiale (il cloruro di rutenio) sembra che gli spin puntino disordinatamente un po’ ovunque.

Un’interpretazione artistica del liquido di spin. In questo stato, gli elettroni sono orientati in modo disordinato, come le molecole di acqua in un bicchiere. Credit: Francis Pratt / ISIS / STFC

Questo nuovo stato, detto liquido di spin, appare se gli elettroni si “spezzano” in particelle: i fermioni di Majorana.

C’è solo un piccolo problema: gli elettroni non possono spaccarsi in parti perché sono un blocco unico. Come fanno allora i fermioni di Majorana ad esistere?

Strettamente parlando, non esistono. Gli elettroni non si spezzano davvero, però si comportano come se lo facessero. Perciò i fermioni di Majorana sono chiamati “quasi-particelle”: entità utili da includere nei modelli, ma impossibili da trovare in natura.

I fermioni di Majorana non erano mai stati osservati prima, ma hanno importanti applicazioni per i superconduttori e i computer quantistici.

 

Foto copertina: CC0 ikinitip, via pixabay.