La foglia artificiale per l’energia a emissioni zero

L’anidride carbonica (CO2) è probabilmente il più famigerato nemico della nostra atmosfera. Siccome è un potente gas serra, contribuisce pesantemente al riscaldamento globale, l’acidificazione degli oceani e tutto quello che ne consegue. Quindi è comprensibile che gli scienziati abbiano provato diversi sistemi per ridurne la concentrazione, da seppellirla sotto terra a (con un successo sorprendente) trasformarla in roccia. L’unico modo per mantenere i livelli di CO2 sotto controllo in maniera continuativa, però, resta semplicemente produrne meno.

In uno studio pubblicato su Science, un gruppo di scienziati della University of Illinois di Chicago (UIC) e dell’Argonne National Laboratory hanno affrontato il problema con un sistema che, letteralmente, cresce sugli alberi. “Una foglia converte anidride carbonica in zuccheri usando l’energia del Sole”, dice Amin Salehi-Khojin, Assistente Professore al Laboratorio di Nanomateriali e Sistemi Energetici della UIC e autore senior dello studio. “Noi abbiamo costruito una foglia artificiale che usa la stessa energia del Sole per convertire CO2 in syngas—un misto di gas che si può facilmente trasformare in diesel o altri carburanti”. Il tutto senza bisogno di ulteriore energia dall’esterno.

Secondo Salehi-Khojin, le prospettive per le foglie artificiali sono esaltanti. Pensate di collegare un campo di pannelli solari con queste foglie artificiali ad una normale centrale termoelettrica, dice: “La centrale brucia carburante per trarne energia, liberando anidride carbonica. Le foglie la assorbono direttamente dallo scarico e la trasformano in carburante che la centrale può bruciare di nuovo”. Un ciclo del genere azzera le emissioni di CO2 della centrale, senza bisogno di sostituire tutti i macchinari esistenti.

Generare qualsiasi cosa dall’anidride carbonica, però, non è affatto facile perché il gas è famosamente poco reattivo. Durante la fotosintesi naturale, enzimi specializzati hanno il compito di facilitare le reazioni. La foglia artificiale, invece, usa piccolissimi fiocchi (sono larghi appena qualche centinaio di atomi) di un materiale a base di tungsteno. Economico ed efficace, questo materiale è la vera innovazione di questa foglia artificiale. La sua potenza è tale che la foglia immagazzina nel carburante l’equivalente del 5% dell’energia che riceve dal Sole, un risultato impensabile usando materiali normali e più costosi (come argento e platino), e che perfino le piante più efficienti raggiungono a malapena.

Secondo gli scienziati, poi, la foglia artificiale non sta nemmeno lavorando a pieno regime. Per raccogliere l’energia dalla luce, la foglia usa celle fotovoltaiche—lontane cugine di quelle delle calcolatrici, per capirci—che sono relativamente inefficienti. Se le celle raccogliessero meglio l’energia, dicono, ci sarebbero già ora risultati migliori, senza bisogno di ulteriori modifiche.

La ricerca sulle foglie artificiali traccia una strada per un futuro fatto di energie pulite di cui abbiamo disperatamente bisogno. E potrebbe non essere poi così lontano. Secondo Salehi-Khojin, infatti, i primi prototipi su scala industriale potrebbero arrivare in pochi anni. “Ma ci serve una stretta collaborazione con l’industria” dice. “La chimica funziona, dobbiamo solo realizzarlo su scale più grandi, e ottimizzare il progetto e il processo produttivo”.

 

(c) The Munich Eye, all rights reserved.

Foto copertina: CC0 Anthony Rossbach, via unsplash.com

Che diavolo è la fMRI?

Alcune parti del cervello si “accendono” quando proviamo certe emozioni, quando ascoltiamo la musica, o quando risolviamo problemi matematici. Vi sarà sicuramente capitato di imbattervi in notizie simili, visto quanto spesso finiscono sulla stampa. La tecnica che si usa per questi studi (e in tantissimi altri di neuroscienze) si chiama risonanza magnetica funzionale, o fMRI (functional Magnetic Resonance Imaging), che è una gran figata, ma sembra anche avere qualche problema. Prossimamente se ne sentirà parlare abbastanza, quindi vale la pena di capire cos’è.

Una macchina per la risonanza magnetica. CC-BY-NC Penn State, via Flickr.

Cominciamo dalle basi. La risonanza magnetica (quella che ci fanno se ci facciamo male al ginocchio, per capirci) sfrutta campi magnetici e la risonanza, cioè reazioni inusuali di un oggetto o materiale ad uno stimolo di una particolare frequenza.

Il classico esempio è spingere qualcuno su un’altalena: spingendo ogni volta che l’altalena arriva a fine corsa, la facciamo più in alto che spingendo in momenti a caso. Semplificando (molto), la risonanza magnetica usa onde radio per spingere atomi di idrogeno, che abbondano in tessuti ricchi di acqua o grasso, tipo il cervello.

I nuclei di idrogeno hanno spin, una proprietà che li fa reagire ai campi magnetici come una bussola. La macchina per la risonanza magnetica applica un forte campo magnetico, allineando gli spin degli atomi, che poi colpisce brevemente con un’onda radio. Se la sua frequenza è quella giusta (chiamata frequenza di risonanza), l’onda rovescia lo spin di alcuni atomi (non gli atomi stessi però!).

Appena l’impulso termina, tutto torna com’era e gli atomi rilasciano un po’ di energia. Registrando queste emissioni con un’antenna si possono distinguere tessuti con diverse quantità d’acqua, ad esempio, diverse parti del cervello, generandone un'immagine.

Schema semplificato del funzionamento della risonanza magnetica. Gli atomi (palline rosse) si allineano al campo magnetico verde, finché l’onda elettromagnetica viola non li investe, rovesciando i poli di alcuni. Appena possono, gli atomi tornano al loro stato iniziale e rilasciano l’energia, che viene registrata dall’antenna blu. Credit: howequipmentworks.com

Per la fMRI si registrano velocemente tantissime di queste immagini. Analizzandole tutte è possibile capire quali parti del cervello sono più attive in ogni momento perché sono quelle dove viene indirizzato più sangue ossigenato, che reagisce alla risonanza in modo leggermente diverso da quello che sta lasciando il cervello.

L’operazione, francamente geniale, richiede un sacco di analisi statistica. Secondo alcuni studi recenti, servirebbe molta cautela e un intenso scrutinio dei software che fanno questa parte del lavoro. In uno studio, ad esempio, un salmone morto sembrava reagire quando gli venivano mostrate foto di persone.

Non vuol dire che la tecnica non sia valida, ma solo che bisogna stare attenti a cosa succede. Questi studi sono importantissimi per la ricerca, perché ci fanno identificare problemi ed errori.

Solo così possiamo essere sicuri di quello che stiamo facendo e di sfruttare appieno i risultati di tecniche spettacolari come la fMRI.

Per saperne di più

 

Foto copertina: SumaLateral Whole Brain Image, CC-BY NIH Image Gallery, via Flickr. Some rights reserved.

Come funziona un computer quantistico

Probabilmente avete già sentito parlare di computer quantistici. Il vantaggio di leggere la spiegazione qui invece che sentirla da persone molto più affascinanti di me è che non ci sono occhi blu in cui perdersi.

Come dice giustamente il buon Justin, i computer quantistici non usano i normali bit, niente lunghe serie di 0 e 1. Al loro posto usano degli oggetti chiamati quantum bit, o qubit, che possono trovarsi in stati di sovrapposizione, possono essere 1 e 0 contemporaneamente.

L’idea è un po’ la stessa del gatto di Schrödinger che, finché non viene osservato, resta sia vivo che morto.

Il Prof. Andrea Morello dell’Università del New South Wales (Australia), spiega in un’intervista su Veritasium uno dei grandi vantaggi di usare i qubit: immagazzinare informazione in modo efficiente.

Due bit, dice Morello, possono avere quattro combinazioni di valori: 00, 01, 10, 11 e per descriverli sono necessari—spoiler—due bit (il valore del primo e quello del secondo).

Anche due qubit hanno quattro combinazioni. Se andassimo a misurarli, però, li troveremmo ogni volta un diverso in una diversa, e la probabilità di ognuna dipende da come abbiamo costruito la sovrapposizione. Per descrivere la sovrapposizione, quindi, ci serve sapere ciascuna delle probabilità, quindi 4 numeri*.

Sintetizzando, la quantità di informazione nei bit normali aumenta in proporzione a quanti ne usiamo, mentre quella nei qubit aumenta esponenzialmente. Mica male.

Un altro vantaggio dei computer quantistici è che possono manipolare la sovrapposizione stessa, senza misurare i qubit fino alla fine del calcolo. In questo modo possono usare tutte le combinazioni contemporaneamente e portare avanti molte operazioni in parallelo.

Questa abilità è inutile per gli usi quotidiani, ma aiuterebbe molto alcuni calcoli complessi, ad esempio, per capire come si ripiegano le proteine, che è fondamentale per scoprire nuove medicine. Per farlo, però, bisogna calcolare una dopo l’altra tutte le miriadi di combinazioni possibili, che è difficilissimo. I computer quantistici potrebbero simulare tutte le configurazioni in parallelo, sveltendo di molto l’operazione.

In teoria sappiamo praticamente tutto: come manipolare i qubit, che struttura devono avere i circuiti, come devono essere programmati i computer. Costruirli davvero, mettere insieme più di un paio di qubit sembra ancora molto molto complicato (nonostante notevoli recenti passi avanti).

Almeno per ora, tra il dire e il fare…

 

Credit: stefanieshank.tumblr.com

 

*Nota per attenti alla matematica:

Avrete notato che le probabilità devono sommare a 1, perciò si eliminerebbe uno dei numeri necessari per descrivere la sovrapposizione. Non me lo sono dimenticato, ma ho saltato l’argomento per brevità, semplicità e coerenza con quello che dice Morello nell’intervista. Resta il fatto che l’informazione contenuta nei qubit è esponenziale nel loro numero che sia 2^n o 2^n -1 bit.

 

Foto copertina: CC0 Wokandapix/pixabay.com

Il felice incidente che apre la strada per incredibili batterie del futuro

Chi non vorrebbe un telefono sottile, che rimane carico per giorni e mantiene la durata della batteria per anni? Ma le batterie grosse e che non durano nel tempo zavorrano molte tecnologie, al di là dell’elettronica quotidiana, dalle auto elettriche alle centrali fotovoltaiche ed eoliche.

La nanotecnologia ha mostrato sprazzi di una soluzione: le batterie a nanofili, tuttavia ci sono ancora grossi ostacoli da superare. Anzitutto, questi apparecchi futuristici sono ancora molto fragili e inaffidabili. Ma, grazie al lavoro di Mya Le Thai—dottoranda nel laboratorio del Prof Reginald Penner all’Università della California-Irvine—ora abbiamo un metodo promettente per farle durare virtualmente una vita.

Il nocciolo del funzionamento di una batteria è usare reazioni chimiche per trasferire elettricità tra pezzi di materiale conduttore (gli elettrodi) e una soluzione elettrolitica (essenzialmente, un liquido in cui sono disciolti dei sali). Al posto degli elettrodi, le batterie ai nanofili usano migliaia di fili conduttori, ognuno più sottile del filo di una ragnatela. Perciò le reazioni chimiche hanno un sacco di posto a disposizione, anche in piccole batterie. “Il vantaggio principale dei nanofili per lo stoccaggio dell’energia è l’incredibile rapporto superficie:volume, che permette di ottenere un’altissima potenza (ovvero corrente)”, spiega Penner.

Ma, aggiunge, questa potenza ha un costo: “Questa enorme superficie amplifica anche l’effetto di tutti quei processi chimici che erodono la superficie dei fili”. Infatti le reazioni chimiche che danno energia alla batteria sono le stesse che ne consumano gli elettrodi. Così una batteria può passare tra essere scarica e carica solo un certo numero di volte (qualche centinaio di solito) prima di perdere capacità. Che è poi il motivo per cui, ad esempio, i cellulari restano carichi sempre meno man mano che invecchiano.

Per i nanofili è anche peggio: non solo sono più soggetti alla corrosione, come diceva Penner, ma l’elettricità che gli passa attraverso li sforza molto più di quanto farebbe con massicci elettrodi. Perciò, dopo qualche migliaio di cicli di carica-scarica, i fili sono consumati e corrosi e si spaccano. Quando succede, la batteria è completamente inutilizzabile.

Thai stava lavorando su nanofili d’oro rivestiti di ossido per fare dei condensatori, aggeggi in un certo modo simili a batterie con due poli positivi, che immagazzinano carica elettrica senza usare reazioni chimiche. Perciò possono essere caricati e scaricati molto rapidamente. Con sua (e di tutti) sorpresa, gli apparecchi con cui lavorava Thai duravano centinaia di volte più a lungo del normale. Racconta Penner: “Eravamo entrambi esterrefatti quando ha iniziato a provarli e la capacità non è diminuita dopo 10mila cicli, poi 20mila, e infine (settimane dopo) 100mila cicli. A quel punto abbiamo smesso, sebbene i condensatori non avessero mostrato nessuna perdita di carica. Magari l’avessimo programmato!”

I ricercatori hanno riportato la loro scoperta in un articolo pubblicato su ACS Energy Letters. La chiave sembra fosse usare un gel invece di liquido per la soluzione elettrolitica, ma loro stessi ammettono di non avere le idee molto chiare sul perché. Secondo loro, il gel ridurrebbe lo stress meccanico sui fili e, allo stesso tempo, preverrebbe la corrosione: “Pensiamo faccia entrambe le cose”, dice Penner, “il gel ammorbidisce o plastifica il rivestimento, prevenendo le rotture, ma sembra anche rallentare la corrosione in un modo che non abbiamo ancora ben capito”.

Secono Penner, servirà ancora molto lavoro per valutare la fattibilità di batterie basate sui nanofili. Soprattutto, non è ancora chiaro come collegare la miriade di microscopici fili ai due poli della batteria. E usare fili rivestiti, come hanno fatto loro, va bene in laboratorio ma non sarebbe fattibile a livello industriale.

Ciononostante, lo studio mostra che i nanofili possono davvero essere la strada per incredibili batterie leggere e durevoli!

 

(c) The Munich Eye, all rights reserved.

Foto copertina: Steve Zylius/UCI

Si possono prevedere i guasti di internet?

Per sapere quando usare i cubetti di ghiaccio che abbiamo in freezer non ci interessa come e perché l’acqua congela a zero gradi. Basta sapere se sono più caldi o più freddi di zero perché sappiamo che, al di sotto di quel punto critica, l’acqua è instabile e basta una minima spintarella perché congeli.

Anche l’infrastruttura di internet è una complicata rete di parti che interagiscono tra loro, un po’ come molecole d’acqua. E, come per l’acqua, anche per internet ci piacerebbe capire semplicemente in che stato è. Secondo uno studio pubblicato su Nature, per tutte le reti (internet, reti elettriche o addirittura interi ecosistemi) si può trovare una grandezza, una specie di “temperatura”, che ci dice quando diventano instabili.

nature_network

Credit: Nature publishing group

La figura qui sopra mostra l’idea di base: una “funzione di resilienza” raccoglie l’informazione sui rapporti tra le componenti del sistema: chi trasmette o riceve nella rete internet, impollinatori e fiori in un ecosistema, generatori e utenti di una rete elettrica. La funzione dipende da un unico parametro (quel βeff), la “temperatura” del sistema. Conoscendo questa funzione si capisce, indipendentemente dai dettagli, il punto critico della rete, come facciamo con la temperatura dell’acqua.

Il valore della “temperatura” dipende dalla topologia della rete—ovvero chi è collegato (e quanto strettamente) con chi— e cambia aggiungendo o togliendo elementi. Ieri, ad esempio, alcuni nodi TIM si sono guastati, cambiando la topologia della rete e la sua “temperatura” oltre il punto critico, causando il collasso.

Con questo metodo si potrebbero prevedere le condizioni in cui la rete crolla, e come renderla strutturalmente più stabile. Secondo i ricercatori, le reti più stabili non dipendono da singoli nodi vitali (non proprio una novità), hanno alcuni nodi molto connessi e altri meno, e hanno interazioni reciproche piuttosto che gerarchiche.

Non è che ora possiamo andare in giro a prevedere qualsiasi cosa, o che abbiamo risolto i blackout di internet. Anzitutto, anche se il sistema funzionasse, alcune modifiche strutturali sono impossibili o irragionevoli. Poi non è detto che funzioni sempre: questo è un lavoro teorico, che va ancora testato. Sembra andar bene nelle reti studiate nell’articolo, ma potrebbe non funzionare con altre.

 

Foto copertina: internet down 🙁, CC-BY-NC Kirk Lau, via Flickr. Some rights reserved.

1+1 fa davvero 2?

Il nostro mondo quotidiano, tutto sommato, non è troppo complicato per la fisica. Dalle ipotesi (solitamente sbagliate) di Aristotele alle leggi di Galileo e Newton abbiamo un’idea abbastanza precisa di come funziona. Con uno studio pubblicato su Nature Communications, un team internazionale guidato da ricercatori italiani ha dimostrato che il mondo microscopico non è altrettanto intuitivo.

Gli scienziati hanno immerso sfere di vetro grandi qualche millesimo di millimetro in un liquido oleoso. In determinate condizioni, l’agitazione delle molecole del liquido crea una forza tra due sferette vicine, un po’ come se ci fosse una molla a collegarle. Ognuna di loro, perciò, sente la spinta della sua vicina. L’effetto è simile a quello dimostrato in questo video (dal minuto 2 circa).

Intuitivamente, aggiungendo un’altra vicina, la nostra sferetta dovrebbe sentire una forza uguale alla somma della spinta delle due vicine. Dopotutto, se sto spingendo un oggetto—tipo un’auto in panne—e chiedo ad un amico di aiutarmi, la forza totale che esercitiamo sull’auto è semplicemente la somma della mia spinta più la sua.

Ma nel mondo microscopico non è così semplice. Il professor Andrea Gambassi della SISSA di Trieste (e uno degli autori dello studio) spiega che, nei loro esperimenti “la forza complessiva che una particella ‘percepisce’ su di sé è diversa dalla somma delle interazioni con ciascuna delle altre due, se queste fossero presenti da sole”. In pratica, la forza di due sferette assieme è diversa dalla somma delle forze che le due eserciterebbero separatamente. 1+1, questa volta, non fa 2.

La forza tra le sferette in funzione della loro distanza. Le linee rappresentano la somma delle forze che le sferette eserciterebbero da sole, i pallini quella misurata. CC-BY Palatugu et al/Nature.

“Conoscere questi effetti è molto importante, sia dal punto di vista della ricerca di base, sia dal punto di vista pratico, per coloro che studiano come creare micro-macchine”, continua Gambassi. La ricerca fa sempre più progressi verso robot microscopici per eseguire operazioni mediche non invasive. “Per capire come i diversi ‘ingranaggi’ interagiscono questa conoscenza è cruciale, soprattutto in presenza di fluidi”.

 

Foto copertina: Floating Balls, CC-BY-NC sibhusky2, via Flickr. Some rights reserved.

Uno spezzatino di (quasi-)particelle

Ogni elettrone ha uno spin, una specie di bussola interna, che (semplificando un sacco) punta “su” o “giù”. Sparando dei neutroni contro un materiale e vedendo come rimbalzano, si può capire come interagiscono con lo spin degli elettroni e, quindi, come sono orientati gli spin.

In un esperimento con un particolare materiale (il cloruro di rutenio) sembra che gli spin puntino disordinatamente un po’ ovunque.

Un’interpretazione artistica del liquido di spin. In questo stato, gli elettroni sono orientati in modo disordinato, come le molecole di acqua in un bicchiere. Credit: Francis Pratt / ISIS / STFC

Questo nuovo stato, detto liquido di spin, appare se gli elettroni si “spezzano” in particelle: i fermioni di Majorana.

C’è solo un piccolo problema: gli elettroni non possono spaccarsi in parti perché sono un blocco unico. Come fanno allora i fermioni di Majorana ad esistere?

Strettamente parlando, non esistono. Gli elettroni non si spezzano davvero, però si comportano come se lo facessero. Perciò i fermioni di Majorana sono chiamati “quasi-particelle”: entità utili da includere nei modelli, ma impossibili da trovare in natura.

I fermioni di Majorana non erano mai stati osservati prima, ma hanno importanti applicazioni per i superconduttori e i computer quantistici.

 

Foto copertina: CC0 ikinitip, via pixabay.

Gli incredibili polimagneti

Con le calamite possiamo cose che sembrano magiche: spostare oggetti a distanza, fare in modo che due oggetti non si tocchino, anche stringendoli fortissimo.

Sono anche intuitivi: ognuno ha un polo nord e un polo sud, gli opposti si attraggono, mentre poli uguali si respingono. Più in dettaglio, c’è un campo magnetico che collega ogni polo nord al polo sud più vicino, solitamente girando intorno alla calamita.

Un magnete ideale e il suo campo magnetico. CC-BY-SA Geek3, via Commons.

Il campo si indebolisce allontanandosi dal polo, ma l’orientamento resta lo stesso, come si vede facilmente mettendo una calamita sotto un foglio con sopra limatura di ferro.

Limatura di ferro che si allinea al campo magnetico di una calamita.

Quindi due magneti o si attraggono o si respingono, più o meno intensamente, ma sempre allo stesso modo. O almeno così pensavo prima di essere  scioccato da questo video di SmarterEveryDay.

In pratica, c’è un’azienda (Correlated Magnets) che “stampa” piccolissimi magneti (magnetic pixel, o maxel) orientati in vario modo sulla stessa faccia di una calamita, o polimagnete. Quindi il campo magnetico resta sulla stesso lato invece che girare tutto intorno alla calamita, e stampando poli opposti a varie distanze si può regolare il comportamento del polimagnete.

Nel video (dal minuto 5:47), per esempio, mostrano coppie di polimagneti che si attraggono fino ad una certa distanza, poi si respingono, comportandosi come molle. Addirittura ce ne sono alcuni che si attraggono, poi si respingono, poi si attaccano e staccano ruotandoli. WOW!

I polimagneti sono pazzeschi da vedere, ma hanno anche tantissime applicazioni: non avendo parti meccaniche, non si usurano; in più non interferiscono con oggetti elettronici o magnetici (tipo carte bancomat) perché il loro campo magnetico è contenuto.

Correlated Magnets stampa magneti fatti come volete (SmarterEveryDay se n’è fatto fare uno col suo logo, si vede verso la fine del video). Non ho capito come fanno e loro non lo spiegano (segreto industriale suppongo), ma è incredibile.

 

Foto copertina: ferrofluid still 007, CC-BY-NC-ND maurizio mucciola, via Flickr. Some rights reserved.

Come vediamo noi e come vedono i computer

Vi sarà bastato un dettaglio per capire che la foto di copertina è di un’auto. I computer non sono altrettanto capaci. Saranno pure capaci di batterci a Go, ma le macchine hanno difficoltà a distinguere gli oggetti nelle immagini.

Secondo i ricercatori del Weizmann Institute in Israele, il nostro vantaggio è che il cervello coglie singoli dettagli e dà un senso al resto.

I ricercatori hanno messo alla prova questa abilità mostrando diverse foto, spesso sgranate, a migliaia di volontari. Sorprendentemente, dice Shimon Ullman, “Se un’immagine minima perde anche pochissimo dettaglio, tutti improvvisamente perdevano l’abilità di riconoscere l’oggetto”. Nelle foto qua sotto, per esempio, la percentuale passa da oltre il 70% ad a malapena il 20%.

Piccole differenze tra le immagini della riga sopra e quella sotto cambiano moltissimo la possibilità di riconoscere cosa rappresentano (i numeri). Credit: Weizmann Institute

Secondo i ricercatori, questo significa che c’è una quantità minima di informazione che un’immagine deve contenere perché un cervello possa capire di cosa si tratta.

Meglio capiamo come funzionano i complicati processi visivi del cervello, migliori sistemi di visione artificiale possiamo progettare.

Ad esempio, migliorando la vista nelle auto che si guidano da sole.

 

Foto copertina: CC0 Alain Willenmart, via unsplash

L’incredibile materiale che estrae acqua dal nulla

Ricercatori di Harvard hanno sviluppato un materiale che, senza reazioni chimiche speciali, raccoglie umidità dall’aria. Usa solo geometrie prese in prestito da scarafaggi, cactus e una pianta carnivora.

Spesso i materiali innovativi si ispirano a geniali soluzioni naturali, ma di solito imitano una caratteristica sola.

Joanna Aizenberg dice che il suo team ha preso un’altra strada: “La nostra ricerca mostra un approccio complesso, che sposa più specie biologiche per trovare materiali altamente efficienti con proprietà senza precedenti”.

Gobbette come quelle sul dorso di uno scarafaggio del deserto sono perfette per formare goccioline. Posizionando le gobbette a “V”, come le spine dei cactus, si guidano le goccioline dove serve, con l’aiuto di una superficie ultra-scivolosa, come quella che alcune piante carnivore usano per intrappolare insetti.

Il materiale (sinistra) a confronto con una normale superficie liscia. Credit: Aizenberg Lab/Harvard SEAS

Il risultato è un materiale che raccoglie l’umidità con efficienza incredibile, usando solo geometrie e proprietà fisiche.

Le applicazioni potrebbero essere pazzesche. Il materiale può migliorare l’efficienza dei condensatori nelle centrali termiche, riducendo l’inquinamento; in più aiuterà a raccogliere acqua in zone desertiche. Mica male.