Bastano due equazioni per andare sulla Luna

“Andare sulla Luna sembrerà difficile ( credo ne abbia parlato qualcuno), ma in realtà tutto quel che serve sono due semplici regole. Entrambe scoperte dal famoso fisico e stronzo Isaac Newton, che compirà gli anni durante le vacanze… ad un certo punto.

Che bell’omino festivo! credit: csamuel.org

La prima regola è la maestosa a=F/m (probabilmente meglio nota come F=ma). Vuol semplicemente dire che, dividendo l’intensità di una forza (F) che spinge su un oggetto per la massa (m) dell’oggetto, si ottiene di quanto lo si accelera (a). È una formula che vale per tutto, ma in particolare ci dirà come si muove il nostro razzo, quindi è abbastanza importante per il nostro viaggio.

A proposito di razzi, questa formula sta dietro a come i razzi si muovono. La propulsione a razzo, infatti, si basa su quella strana faccenda della “reazione uguale e contraria”, che probabilmente avete sentito.

Se gonfiate un palloncino e lo lasciate andare, vola via facendo un rumore buffo perché l’aria all’interno viene spinta fuori dalla pressione. Però, se consideriamo il palloncino e l’aria assieme, non ci sono nuove forze che iniziano ad agire quando lasciamo la presa. Insomma F=0. Siccome il palloncino spinge l’aria fuori, dev’esserci una forza altrettanto intensa (uguale) che spinge dall’altra parte (contraria) che spinge dall’aria al palloncino. I razzi funzionano uguale, solo che hanno un sacco di tecnologia figa per farlo in maniera più efficiente.

CC-BY-ND mfrascella/flickr

L’altra equazione che Newton ci regala per il viaggio è quella per calcolare la forza di gravità. Che è stato un colpo di genio totale. Ed è abbastanza importante per noi, perché la gravità è il grosso della forza che ci troveremo davanti nello spazio. Quella della Terra, che ancora il razzo al suolo o lo strattona giù dal cielo, e quella della Luna che lo tira a destinazione. Conoscendo come funziona la gravità possiamo iniziare a tracciare la nostra rotta.

Facile no?

Mica tanto: gli astronauti—piloti di caccia con diplomi da ingegneri!—devono seguire corsi apposta per imparare a pilotare le navette spaziali. Prima ancora di arrivare a quello, dovremo costruire la navetta. Dovrà avere abbastanza spinta da sfuggire alla Terra, ma essere abbastanza solida da non esplodere mentre lo fa, e riportarci indietro tutti interi e non abbrustoliti.

Per questo Newton non è andato nello spazio.

Il cuore dei viaggi spaziali è comunque nelle sue equazioni. Tutta la ricerca di tutte quelle persone intelligentissime nelle agenzie spaziali: è tutta per migliorare come usiamo queste due semplici regole.

Grazie e buon compleanno, genio insopportabile!

E buon Natale a tutti!
Per saperne di più
  •  Se vi capita, guardatevi il terzo episodio di Cosmos: non avete sentito spiegare il lavoro di Newton sulla gravità se non ve l’ha raccontato Neil deGrasse Tyson.
  • Se vogliamo andare più lontano, invece, serve ben altro
  • La tecologia spaziale potrebbe non aver più bisogno di Newton tra un po’. Ma è tutto ancora molto vago, e francamente piuttosto strano.

 

Foto copertina: CC0 27707/pixabay

A pesca di rifiuti spaziali

Un’immagine (un po’ melodrammatica) dei detriti spaziali che circondano la Terra. Credit: NASA

Vecchi satelliti, pezzi di razzi usati: l’orbita terrestre è una mezza discarica di rifiuti velocissimi, che minacciano di danneggiare la Stazione Spaziale Internazionale o satelliti utili. Per questo, quando ho letto che la JAXA (la NASA giapponese) ha lanciato un esperimento per pulire un po’ di questi detriti spaziali usando una corda elettrodinamica, ho pensato “Fico. Ma che cacchio è una corda elettrodinamica? Cos’è che vogliono fare?”

Dopo un po’ di ricerche, ho trovato che il principio alla base di tutto è molto semplice: quando delle particelle cariche si muovono in un campo magnetico, sentono una forza che le spinge lateralmente rispetto al loro movimento.

In questo caso, una corda metallica orbita la Terra, puntando dritta verso l’esterno. I suoi elettroni, quindi, viaggiano attraverso il campo magnetico terrestre, che li spinge di lato, accumulandoli da un lato, e creando così un voltaggio tra gli estremi della corda.

Qui viene la parte geniale: ad un capo è attaccato un aggeggio che succhia elettroni dall’ambiente circostante, all’altro uno che li risputa fuori. In questo modo, una corrente scorre attraverso la corda, seguendo il voltaggio.

La corda elettrodinamica attaccata ad un pezzo di spazzatura spaziale: come si muove, e dove spingono le forze. Credit: dailykos.com

Siccome—ripetete con me—gli elettroni in movimento in un campo magnetico sentono una spinta laterale, e la corrente sono elettroni in movimento, ora è tutta la corda che sente una spinta che la frena.

Perché deve frenarla? Perché altrimenti avremmo una macchina del moto perpetuo. E “in questa casa rispettiamo le leggi della termodinamica”, quindi non succede (e comunque i conti tornano).

JAXA vuole testare il funzionamento pratico della corda. Se tutto va bene, il piano è lanciarne di più grandi da attaccare a detriti spaziali per frenarli e farli cadere dalle loro orbite.

In futuro, satelliti e razzi potrebbero partire con corde elettrodinamiche già montate a bordo, per evitare che diventino spazzatura spaziale. Queste corde sono abbastanza leggere e non richiedono carburante, perciò sarebbero un’ottima soluzione per eliminarli a fine missione.

Ma le corde elettrodinamiche possono anche fare da acceleratore. Basta creare una corrente in direzione opposta (per cui, però, serve pescare energia da qualche parte) e la forza dal campo magnetico spingerà in avanti. Per esempio c’è un progetto per usarle per accelerare e mantenere in orbita la Stazione Spaziale Internazionale (che, pian piano, perde quota, come tutto), alimentandole con surplus di elettricità creati dai pannelli solari.

Per saperne di più
  • L’affollamento di rifiuti spaziali è un problema, ma è meno drammatico di quel che sembra da alcune immagini. E qualcuno vorrebbe addirittura lasciarlo là, come ha raccontato 99% invisible
  • La missione di JAXA’s non finiva qui. DailyKos ha messo assieme una descrizione più completa
  • L’interazione tra magneti, cariche, correnti e movimento, in fondo, ha anche a che fare con la relatività, come spiega questo video di Veritasium e Minutephysics

 

Foto copertina: CC0 Lorri Lang/pixabay

Perché le galassie sono piatte (e la Terra no)

L’universo trabocca di roba piatta. La maggior parte delle galassie, inclusa la Via Lattea, sono delle pizze di stelle relativamente sottili. Tutti i pianeti del sistema solare (quelli veri, non Plutone) orbitano più o meno sullo stesso piano. E non è un caso.

The plane along which all (real) planets orbit around the Sun. credit: pics-about-space.com

Il piano su cui tutti i (veri) pianeti orbitano attorno al Sole. credit: pics-about-space.com

Le galassie e i sistemi di pianeti si formano allo stesso modo: coagulando nubi di gas. Anche se, ovviamente, con dimensioni molto diverse.

Immaginate di lanciare nello spazio uno sbuffo di atomi. Spingeteli in direzioni casuali: uno da una parte, uno da un’altra, uno in su, uno in giù. Se non avete barato, si scontrano l’uno con l’altro e, per via della gravità, iniziano a raggrumarsi. A meno che gli atomi si siano scontrati frontalmente (cioè, la maggior parte delle volte), questi grumi iniziano a girare ed attrarsi tra loro, scontrandosi e formando blocchi rotanti più grandi.

Con ognuna di queste collisioni, i grumi di atomi si allineano, annullano tutto il movimento che avevano in direzioni opposte, ma continuano a girare (in termini da fisici pomposi si chiama conservazione del momento angolare). Un po’ come i blob nel video qui sopra: pensateli come ad una galassia che si forma vista “da sopra”.

Lentamente, tutta la nube si appiattisce. Se è una galassia, le sue stelle staranno su quel piano, mentre nel Sistema Solare quello è il piano su cui orbitano i pianeti.

Anche altre galassie e sistemi planetari girano, ma ognuno inclinato a modo suo, perché si sono formati da nubi di gas diverse tra loro.

Una marea di galassie fotografate dal telescopio spaziale Hubble: girano ognuna su un piano diverso. Credit: NASA/wikimedia

Ma anche stelle e pianeti si formano addensando gas: perché non sono piatti anche loro?

Il fatto è che pianeti e stelle sono molto più densi delle galassie. I loro grumi di gas sono molto vicini tra loro e quindi sentono molto più forte l’attrazione verso il centro del grumo, che diventa più forte del meccanismo che li appiattisce. Perciò pianeti e stelle diventano sfere.

Saturno si è formato attraverso tutte le fasi: la maggior parte della materia è andata all’enorme pianeta (chiaramente sferico), ma un po’ ha formato alcune delle sue molte lune più o meno rotonde, e gli ultimi rarefatti rimasugli sono finiti nei suoi famosi—e piattissimi—anelli.

Tondo, piatto, tondo: Saturno, i suoi anelli e quattro delle sue lune. Credit: NASA/wikimedia

Per saperne di più
  • Un lungo ma eccellente post del grande Neil DeGrasse Tyson su pianeti, galassie e l’essere rotondi
  • Minutephysics ha fatto un bel video (da cui ho preso diverse cose) che spiega più tecnicamente come funzionano queste cose, e perché funzionano solo in un universo tridimensionale

 

Cover photo: CC0 WikiImages/pixabay

Quanto manca? Il lungo viaggio verso marte

Siamo davvero così vicini al grande passo verso Marte? Recentemente, il successo solo parziale dell’atterraggio di Schiaparelli è stato un severo richiamo a quanto il Pianeta Rosso sia una realmente una destinazione difficilissima.

Ironicamente, nelle settimane prima dell’evento, molta dell’attenzione era concentrata su piani per portare persone su Marte. Una delle ragioni era un ottimistico articolo di Barack Obama sul sito di CNN, in cui anticipava che la NASA vorrebbe portare astronauti su Marte, e riportarli a casa in sicurezza, nei prossimi 20-25 anni e “un giorno rimanere per tempi più lunghi (l’ESA si è data scadenze simili).

L’altra ragione era un pubblicizzatissimo discorso di Elon Musk—tra le tante cose, fondatore e presidente di SpaceX, la più grande compagnia privata di trasporti spaziali—alla International Astronautical Conference: un’ambiziosa proposta per trasformare l’umanità in una specie interplanetaria. Cominciando da Marte in una decina d’anni “se tutto va benissimo”, dice.

Tuttavia, una missione con equipaggio verso Marte presenta un’enormità di ostacoli, a cominciare dal fatto che Marte è lontano—molto molto lontano.

Il primo problema sono i razzi. Le capsule spaziali che trasportano persone sono grandi e pesanti: per l’atterraggio sulla Luna si usò il Saturn V, il più grande e potente razzo mai costruito. Marte è più di cento volte più lontano della Luna, e i razzi che abbiamo proprio non ce la fanno.

In un’intervista del 2015 con Neil deGrasse Tyson, l’astronauta Chris Hadfield ha paragonato pianificare un viaggio su Marte con la nostra tecnologia a pianificare voli di linea per l’Australia negli anni Venti. Al tempo, anche solo attraversare l’Atlantico—un viaggio lungo meno di metà—era un’impresa storica. Per diventare quotidiano, il trasporto aereo transoceanico doveva aspettare il passaggio dai motori ad elica a quelli a reazione. Secondo Hadfield, ai viaggi spaziali serve una rivoluzione altrettanto radicale per portarci su Marte.

La NASA, l’ESA e SpaceX stanno tutte sviluppando nuovi motori e razzi per carichi pesanti, ma nessuno è ancora pronto. Il razzo Falcon Heavy di SpaceX dovrebbe finalmente arrivare nel 2017, lo Space Launch System della NASA dovrebbe essere lanciato nel 2018, dopo innumerevoli critiche, ritardi e problemi di budget.

Poi c’è il problema dei mesi di viaggio nello spazio, anche assumendo che riusciamo a sparare un veicolo verso Marte a velocità ragionevoli. Finora astronauti e cosmonauti hanno viaggiato solo qualche giorno in piccolissime capsule (come la Soyuz, che contiene a malapena le tre persone dell’equipaggio), che indubbiamente non possono ospitare persone per mesi.

Samantha Cristoforetti all’interno di una capsula Soyuz durante degli esami a terra. via Twitter

In questo campo, la NASA è decisamente in vantaggio: il veicolo Orion—che stanno testando—è progettato proprio per viaggi interplanetari. SpaceX, invece, è appena entrata in campo: una loro capsula dovrebbe portare per la prima volta astronauti sulla Stazione Spaziale Internazionale nel tardo 2017.

Anche se mettessimo persone su Marte, avrebbero bisogno di un qualche genere di insediamento. Nessuno si è mai accampato su un altro pianeta. Mai. Da nessuna parte. Ci sono progetti per unità abitative per astronauti, ma non siamo ancora alla fase di test. Sia la NASA che l’ESA hanno piani per basi lunari, in parte come test per la colonizzazione interplanetaria, ma potrebbe volerci un po’.

Ma la tecnologia non è l’unica sfida: cosa mangeranno i coloni marziani? Come gestiranno situazioni di emergenza se il dialogo con la base ha un ritardo di 13 minuti? Subiranno danni cerebrali dal viaggio?

Insomma, non siamo proprio sul punto di metter piede su Marte.

Dobbiamo ancora imparare e testare, se non addirittura costruire, molto. Molti dei passi che dovremo fare non sono mai stati fatti prima. Ma questo non vuol dire che siano impossibili.

Dopotutto, come ha scritto Obama, questa impresa è frutto di “curiosità ed esplorazione, innovazione ed ingegno, [di] spingere i limiti di quello che è possibile e farlo prima di chiunque altro”.

Se qualcuno può farsi carico di questa formidabile impresa, quelli sono la NASA, l’ESA e SpaceX. Finché continueranno ad avere un supporto adeguato e ad attrarre tante delle nostre menti più brillanti, sarà solo questione di tempo.

Aspettiamo i passettini della scienza, mentre non vediamo l’ora di vedere le nostre impronte su Marte!
(c) The Munich Eye, all rights reserved.
Foto copertina: NASA/MSFC, via Wikimedia Commons.

 

Marte dà il benvenuto al suo nuovo satellite

Il 19 Ottobre 2016 la missione ExoMars, in collaborazione tra Europa e Russia è giunta a destinazione, portando il satellite Trace Gas Orbiter (o TGO) e un lander sperimentale, chiamato Schiaparelli. Non tutto è andato proprio come previsto ma, come hanno detto i vertici dell’ESA in una conferenza stampa, la missione è comunque un successo.

La buona notizia è che TGO è entrato perfettamente nella sua orbita prestabilita. Da lì annuserà l’atmosfera marziana in cerca, tra le altre cose, di tracce di vita sul pianeta. Servirà anche come stazione intermedia per le comunicazioni con missioni sulla superficie: i due rover della NASA attualmente su Marte, e quello che l’ESA stessa pianifica di mandare nel 2020.

Molta dell’attenzione sulla missione, però, si concentrava sul modulo Schiaparelli. La sonda aveva un carico scientifico limitato, e serviva soprattutto come prova generale della procedura di atterraggio automatica (magari da usare per la parte della missione nel 2020).

Il centro di controllo ha perso il contatto con la sonda circa un minuto prima del previsto atterraggio. Fortunatamente, il modulo aveva mandato regolarmente tutti i suoi dati fino ad allora, e i tecnici sono al lavoro per ricostruire l’accaduto.

Pare che i razzi che avrebbero dovuto rallentare gli ultimi chilometri della discesa abbiano avuto un guasto, lasciando il lander in caduta libera. Le immagini raccolte dal satellite Mars Reconnaissance Orbiter della NASA sembrano mostrare prove di uno schianto sulla superficie di Marte. [Successive analisi confermeranno poi queste ipotesi]

Nonostante il fallimento, Schiaparelli era un modo per l’ESA per tastare il terreno in vista di atterraggi futuri. TGO, invece, con il suo immenso carico scientifico e la sua importanza strategica è un importante passo avanti verso Marte.

 

(c) The Munich Eye, all rights reserved.

Una stella come le altre?

Pensateci: l’idea che il Sole sia essenzialmente la stessa cosa di una stella qualunque non ha nessun senso. Voglio dire, basta guardarli: non potrebbero essere più diversi!

Seriamente. Vi sembrano la stessa cosa? credit: CC-BY-ND Jessie Hodge via flickr

Seriamente. Vi sembrano la stessa cosa del Sole? credit: CC-BY-ND Jessie Hodge via flickr

Come cavolo abbiamo fatto a convincerci di una cosa così stravagante?

Beh, è stato un lungo viaggio, partito da una serie di supposizioni più o meno strampalate di “scienziati” dell’antichità. Qualcuno ci ha pure relativamente azzeccato, ma altri parlavano di pietre incendiate appiccicate in cielo.

Il primo passo davvero scientifico l’abbiamo fatto nel 1838, imparando quanto incredibilmente lontane siano le stelle. Quell’anno, l’astronomo (tra le varie occupazioni) tedesco Friedrich Bessel fu il primo a misurare la distanza di una stella, ora nota come 61 Cygni. Il risultato? Era migliaia di volte più lontane del Sole. Centinaia di migliaia di volte.

Se sono così lontane, si pensò, potrebbero essere anche altrettanto grandi, se non di più ( spoiler: alcune sono molto più grandi). Ok, ma sono la stessa cosa?

Pochi anni dopo abbiamo imparato a leggere la composizione chimica di una stella dalla sua luce. Gli elementi al suo interno, infatti, assorbono la luce in modi caratteristici. Guardando la luce attraverso un prisma, vediamo le sottili strisce scure che si lasciano dietro, da cui possiamo ricostruire di cos’è fatta la stella.

fraunhofer_lines

La luce solare, scomposta nei suoi colori, con le bande nere (o “linee di Fraunhofer”) causate dagli elementi al suo interno. Via wikimedia.

Il prossimo passo fu capire come calcolare la temperatura di una stella dal colore della sua luce (più esattamente, dalle lunghezze d’onda). Tutto ciò che ha una temperatura—cioè tutto—riluce in un modo particolare a seconda di quanto è caldo. Serve la meccanica quantistica per capire come e perché, ma funziona: lo usiamo per i termometri a infrarossi.

Alla fine il Sole si è rivelato essere suppergiù nella media sia per temperatura che per dimensione e composizione. Comunque, rimaneva una stella speciale: era l’unica ad avere pianeti. Anche questo è cambiato. C’è voluto un po’, ma ora troviamo esopianeti (pianeti che orbitano altre stelle) a migliaia.

Il Sole è una semplice stella, quindi. Abbiamo ragionato sull’universo l’abbiamo guardato, e con così poco abbiamo capito questa cosa così violentemente controintuitiva. Non conosciamo nessuna stella che ospiti qualcosa con abilità del genere. E questo credo sia piuttosto speciale.

298013

 

Foto copertina: CC0 Mayur Gala, via unsplash.com

Per saperne di più
  • Bessel è stato il primo a misurare la distanza da una stella per un motivo: era davvero difficile. Su wikipedia trovate una spiegazione del metodo ingegnoso che ha usato.
  • La meccanica quantistica non spiega proprio come il bagliore delle cose: in realtà è nata cercando di risolvere quel problema. Questo video di PhysicsGirl spiega come

Cosa abbiamo imparato da Rosetta

Il 30 settembre (oggi, se leggete questo post appena esce), si concluderà la grande missione Rosetta dell’Agenzia Spaziale Europea (ESA).

Era una lunga missione, con un epico inseguimento lungo dieci anni attraverso il Sistema Solare, al termine di cui la sonda Rosetta (da cui il nome della missione) raggiunse la sua orbita intorno alla cometa 67P Churyumov/Gerasimenko. Questo l’ha resa il primo oggetto costruito da noi ad orbitare una di queste palle di neve spaziali. Dalla sua posizione privilegiata, Rosetta ha studiato la cometa da vicino e lanciato un piccolo robot, il lander Philae, per toccare la sua superficie (potete ascoltare il suono di questo momento storico qui).

Ora che la cometa si sta allontanando dal Sole, però, sta diventando troppo freddo e buio per Rosetta. La missione finirà. In stile funerale vichingo, spiaccicando la sonda contro la cometa. Per ringraziarla del suo lavoro, diamo uno sguardo a quello che ha fatto Rosetta nei suoi 12 anni di attività.

Siccome non eravamo mai arrivati così vicini ad una cometa, va da sé che avessimo un sacco di domande per Rosetta, tipo, com’è fatta davvero una cometa? Davvero l’acqua sulla Terra viene da lì?

CC0 Holgers Fotografie, via unsplash

E le sorprese sono iniziate subito. Gli astronomi si aspettavano che la cometa fosse più o meno sferica o a forma di patata, come un asteroide. Invece, già dalle primissime immagini si sono trovati davanti una specie di paperella da bagno. A quanto pare, è quello che succede in scontri cosmici al super-rallentatore. Infatti i due pezzi di 67P sarebbero due comete più piccole, con debolissima attrazione gravitazionale, che che si stanno scontrando moooolto lentameeeente.

Uno dei compiti più importanti per Rosetta era analizzare il ghiaccio su 67P e dirci se davvero l’acqua della Terra venga dalle comete. Sembrava molto probabile (probabilmente l’avevate sentito dire), ma in pochissimo tempo abbiamo scoperto che non è così. La miscela di tipi di idrogeno non corrisponde a quella sulla Terra: la nostra acqua è arrivata da un’altro posto. Ma abbiamo visto che le comete portano tantissimo ossigeno, e perfino mattoni elementari per la vita, come composti a base di carbonio, fosforo e amminoacidi.

Diversi di questi risultati erano impossibili semplicemente misurando la cometa: dovevamo fisicamente toccarla, grattarla, scavarla e misurarla. Questo era il compito del lander Philae che è stato… ehm… diciamo meno interamente positivo. Ad ogni modo, Philae ha fatto quello che doveva fare, solo non i compiti bonus.

Did disturbing tweets from Rosetta distract Philae? We'll never know. Creepy, though...

“Ho freddo alla schiena ora che te ne sei andato, ma ora sono in una posizione migliore per guardarti. Mandami una cartolina!” Tweet del genere hanno distratto Philae facendogli sbagliare l’atterraggio? Non lo sapremo mai…

Il problema è stato che l’atterraggio (effettivamente difficile da azzeccare), è andato onestamente male. Philae è rimbalzato un paio di volte ed è finito incastrato tra delle rocce. Perso e all’ombra, quindi incapace di usare i pannelli solari per ricaricarsi, aveva solo pochi giorni rapidamente completare i suoi esperimenti e spedire tutti i dati. Ce l’ha fatta, poi si è spento. A parte un breve momento a giugno 2015, Philae non è mai tornato e non l’abbiamo trovato fino all’ultimo.

Le foto di Philae incastrato tra le rocce. Visto com’era messo, è incredibile che sia riuscito a completare le misure. Credit: ESA

Rosetta ci ha regalato un’enormità di dati, e uno sguardo tutto nuovo per le comete. Ci ha fatto capire cosa significhino “lassù” le cose che vediamo “quaggiù” dai nostri osservatori. Ora possiamo anche guardare in una luce nuova comete che già conosciamo. In un certo senso, come hanno detto su StarTalk, è come se avessimo visitato più comete in una volta sola.

Quindi grazie di tutto Rosetta!

Per saperne di più

Immagine di copertina: Un’interpretazione artistica di Rosetta di fronte alla cometa 67P, from ESA.int

Due cose su Proxima b

Chi l’ha detto che ad agosto non succede niente? Mentre noi eravamo in pausa, l’Osservatorio Europeo Australe (ESO) ha annunciato la scoperta di un nuovo pianeta mooolto interessante.

Si chiama Proxima b e prende il nome da Proxima Centauri, la stella intorno a cui orbita. Come suggerisce sottilmente il nome, Proxima Centauri è nella costellazione del Centauro e non è molto lontana da noi. Anzi, è in assoluto la stella più vicina al Sistema Solare*.

Se vi siete persi la notizia, ESO ha messo assieme questo bel video con tutte le notizie principali.

 

Ci sono un paio di cose che ho trovato molto interessanti ma un pochino trascurate nella discussione in giro: la tecnica superfichissima con cui hanno trovato Proxima b, e una riflessione sulla sua abilità perché, come al solito, andiamoci piano con gli alieni.

Come l’hanno trovato

La maggior parte delle scoperte di esopianeti viene dal telescopio spaziale Kepler, che misura quanto brillanti sono le stelle che osserva. Quando un pianeta passa tra la sua stella e noi, blocca un pochino della luce (una specie di mini-eclissi). Kepler riesce a percepire queste microscopiche variazioni di luminosità e così trova i pianeti. Tuttavia, come hanno spiegato quelli dell’ESO in un AMA su Reddit, il metodo Kepler non avrebbe funzionato in questo caso, perché Proxima b passa troppo di rado davanti alla sua stella.

Gli scienziati si son fatti furbi e hanno sfruttato l’effetto doppler.

Un esempio classico (che dimostra anche Sheldon) è il rumore di un’auto che ci passa davanti. Mentre si avvicina, il suono diventa più alto, poi si abbassa sempre più quando si allontana. La luce fa la stessa cosa. Se una stella si muove verso di noi, la sua luce ci arriverà un po’ più blu, viceversa, se si allontana vedremo una luce più rossa.

Qui arriva la parte geniale: se un pianeta è in orbita attorno ad una stella, la tira un po’ con la sua gravità, perciò la stella finisce per seguire il pianeta, muovendosi in un piccolo cerchio. In pratica, ondeggia.

Gli scienziati hanno cercato segni di questo ondeggiamento nel colore della luce da Proxima Centauri… et voilà! Hanno trovato che la stella si avvicina e allontana un pochino da noi regolarmente, più o meno a passo d’uomo (5 km/h).

Una volta sicuri che l’attività della stella non c’entrasse con i cambiamenti della luce, hanno capito di aver trovato un pianeta.

Ma non solo: dal tempo che ci mette Proxima Centauri a completare un giro e dalla velocità a cui ondeggia, hanno potuto calcolare quanto ci mette il pianeta a completare un’orbita (quanto dura un “anno” su Proxima b), quanto lontano sta dalla stella e (più o meno) quant’è la sua massa.

La posizione non è tutto

Dai calcoli risulta che Proxima b stia su un’orbita piuttosto stretta: il pianeta sta a soli 7 milioni di km dalla sua stella. Sembra molto, ma in realtà ”èESO, Un confronto tra l’orbita di Mercurio attorno al Sole con l’orbita di Proxima b intorno a Proxima Centauri, all’interno della sua zona abitabile. Credit: M.Kornmesser/G.Coleman/ESO[/caption]

Quindi c’è vita su Proxima b? Mmmm... presto per dirlo.

Essere nella zona abitabile è necessario per avere acqua sulla superficie, ma non basta, molto dipende dall’atmosfera del pianeta. Venere e Marte, ad esempio, sono entrambi nella zona abitabile del Sole. Venere ha un’atmosfera densissima, così la sua superficie assomiglia molto alla nostra idea di inferno, con tanto di laghi di metallo fuso. L’atmosfera marziana, invece, è così diradata che l’unica forma di acqua liquida che ha è quel fango tossico scoperto l’anno scorso. A parte quello, è un deserto gelido.

In più, Proxima b sembra avere un lato di perenne giorno e uno di perenne notte. Se non dovesse avere la giusta circolazione di aria, uno dei due probabilmente sarebbe bollente e l’altro gelido: non proprio le migliori condizioni per l’acqua.

A dirla tutta, pure se ci fosse acqua, la vita potrebbe avere grossi problemi. Proxima Centauri, infatti, ha una fastidiosa abitudine ai brillamenti—improvvise eruzioni di intensissimo calore e radiazione. Pianeti che, come la Terra, hanno un campo magnetico sono protetti a meno di eventi catastrofici. Se Proxima b non avesse nessun campo magnetico, i suoi omini verdi verrebbero rapidamente ridotti in cenere. Radioattiva.

Purtroppo non abbiamo modo di mandare sonde per capirci qualcosa in più: Proxima Centauri sarà pure la stella più vicina a noi, ma anche la più veloce delle nostre sonde ci metterebbe decine di migliaia d’anni ad arrivare. Se dovesse davvero partire il Progetto Startshot, però, quella sarebbe la sua prima destinazione.

Per saperne di più
  • L’articolo (come sempre denso di informazioni) di Emanuele Menietti sul Post.
  • Due riepiloghi dei fatti in inglese: uno breve (del sottoscritto) e uno lungo (del grande Phil Plait).
  • Tutto quello che avete voluto sapere su Proxima b ma non avete mai osato chiedere: il sito di Pale Red Dot, il team ESO autore della scoperta.

 

Foto di copertina: M. Kornmesser/ESO
*Correzione del 9/9: il post indicava erroneamente Proxima Centauri come la stella più vicina alla Terra. Ovviamente il Sole è più vicino. 

La notte delle stelle cadenti

CC-BY-NC-ND David Kingham, via Flickr

Agosto, con le sue serate miti, è un ottimo momento per uscire a guardare le stelle. E quando meglio delle sere intorno al 10, la famosa notte delle stelle cadenti?

L’universo ci regala questo spettacolo grandioso perché, tra luglio e agosto, la Terra attraversa la scia di detriti lasciati dalla cometa Swift-Tuttle. La cometa è ormai ben lontana ma, quando era passata di qua (relativamente vicino al Sole), si era scaldata, eruttando vapore, polvere e sassolini ovunque. Questa roba è rimasta come una scia dietro la cometa e, quando la Terra l’attraversa, i granelli le cadono letteralmente addosso. Mentre attraversano l’atmosfera, diventano incandescenti, lasciando tracce luminose: le stelle cadenti.

Ho sempre pensato fosse l’attrito con l’aria a generare il calore, ma ho recentemente imparato che non è così. Appena entrano nell’atmosfera, infatti, schiacciano una contro l’altra le molecole che incontrano. Per una famosa legge fisica, l’aria si scalda quando compressa, e granelli microscopici che arrivano a velocità pazzesche (migliaia di kilometri l’ora!), la comprimono tantissimo. L’aria, diventata rovente, scalda a sua volta la polvere fino a farla diventare incandescente.

La Terra attraversa i detriti della cometa Swift-Tuttle mentre orbita il Sole. La direzione del movimento e la prospettiva fanno sembrare che le stelle cadenti arrivino da un punto. CC-BY-SA Aanderson@amherst.edu/wikimedia

La Terra, in tutto questo, si sta muovendo lungo la sua orbita, perciò investe i detriti della cometa tutti nella stessa direzione. Di conseguenza, le stelle cadenti sembrano arrivare da un punto nel cielo (detto radiante), come la pioggia che sembra arrivare da un punto davanti a noi mentre guidiamo. Siccome per le stelle cadenti di agosto, questo punto è nella costellazione di Perseo, sono chiamate perseidi.

Ma non sono le uniche. La Terra attraversa altre comete durante l’anno, e vari detriti spaziali la colpiscono di continuo. In totale, secondo una stima, le stelle cadenti “ingrassano” la Terra di 15mila tonnellate l’anno.

Anche se è moltissimo materiale, la maggior parte sono granelli di polvere che si dissolvono nell’atmosfera, quindi non c’è da preoccuparsi. Quelli un po’ più grandi possono arrivare spettacolarmente a Terra (ricordate Chelyabinsk?). Cose ancora più grandi sono effettivamente pericolose. Ma sono rare, molti scienziati—particolarmente quelli della fondazione B612 (dal nome molto puccioso)—stanno lavorando ad una soluzione.

Quindi le stelle cadenti non sono veramente stelle. Però quando abbiamo dato loro il nome, chiamavamo stella più o meno qualunque lumicino in cielo, e queste almeno cadono davvero verso la Terra. Visto quanto ci sbagliavamo su altre cose, questa possiamo prenderla per buona.

Per saperne di più

 

Foto copertina: CC0 DIE_UFOS/pixabay.com

Quanta acqua serve per spegnere il sole?

Provate a pensarci prima di leggere la risposta: si può risolvere il problema afa buttando un sacco di acqua sul Sole spegnendolo?

CC-BY alexisnyal via Flickr. Some rights reserved.

Ok, non è impossibile (ci arriviamo dopo, lasciatemi creare un po’ di tensione), ma prima ci sono diversi problemi da risolvere.

Primo problema: l’acqua non rimarrebbe liquida nel freddo vuoto cosmico. Anche un grosso secchiello congelerebbe in pochissimo tempo. E comunque tutta l’acqua evaporerebbe avvicinandoci alle migliaia di gradi del Sole, e il vento solare la spazzerebbe via.

Secondo problema: servirebbe tantissima acqua, una massa paragonabile a quella del Sole stesso, ma probabilmente di più. Già trovato il problema? Se il Sole ha abbastanza massa da iniziare la fusione nucleare, anche il nostro enorme secchiello ce l’avrebbe. Il secchiello imploderebbe, diventando a sua volta una stella. Ora abbiamo due soli. Ben fatto.

giphy.com

Terzo e più importante problema: l’acqua spegne il fuoco tagliandogli l’ossigeno, ma al Sole non serve ossigeno perché non è un fuoco, come spiega questo divertente video di Vsauce e Minutephysics.

Aggiungere acqua, come spiega Michael nel video, darebbe solo altro carburante alla fusione nucleare e peggiorerebbe il caldo sulla Terra. Dal lato positivo, le stelle più massicce bruciano più in fretta. Potremmo scambiare 5 miliardi di anni di calura con qualche centinaio di milioni di anni di inferno. Ci si mette troppo.

Come promesso, un modo c’è: usare un idrante e buttare tantissima acqua (ma a quel punto va bene qualunque cosa) nel Sole quasi alla velocità della luce. Se fatto nel modo giusto, dissolveremmo interamente il Sole, risolvendo in modo rapido e definitivo il problema caldo.

Per farlo, quindi, dobbiamo solo trovare un sacco di acqua… e inventare un potentissimo cannone… e calcolare come fare… no dai, fa troppo caldo… non ho voglia!

 

Foto copertina: CC0 Olichel, via pixabay.com