EM drive: il futuro impossibile dei trasporti spaziali

Arrivare su Marte sarebbe figo, certo. Anche esplorare lo spazio. Ma finché non migliora la tecnologia dei nostri razzi, non andremo proprio da nessuna parte.

Continua a leggere

L’esagono di Saturno

Ogni pianeta ha qualcosa di speciale, ma gli anelli di Saturno sono certamente la caratteristica più appariscente. A ben guardare, però, Saturno ha anche altre cose strane. Tipo un grande esagono, quasi perfettamente regolare disegnato attorno al suo polo nord.

Continua a leggere

Encelado: cronache di ghiaccio e maree

Un’illustrazione di Cassini in picchiata sui geyser di Encelado. credit: NASA/JPL

Cassini terminerà la sua missione ventennale a settembre. E vuole proprio andarsene in bellezza. In una conferenza stampa ieri, la NASA ha annunciato che la sonda, sorvolando Encelado (una luna di Saturno) nel 2015, ha trovato indizi che l’oceano di questa luna ghiacciata abbia quasi tutti gli ingredienti che pensiamo servano per la vita.

Continua a leggere

Fenomenali poteri cosmici e minuscolo spazio vitale

Non sarebbe bellissimo portare l'universo in laboratorio? L’astronomia è una delle parti della fisica che più catturano la fantasia. Svelare i misteri dell’universo, d’altra parte, è indubbiamente affascinante. Purtroppo galassie e buchi neri non collaborano agli esperimenti.

Un gruppo di fisici, che fa capo all’Università Federico II di Napoli, sta lavorando ad una soluzione.

Continua a leggere

Il jazz e l’atmosfera degli esopianeti

L’atmosfera di un pianeta è la chiave per renderlo abitabile, perciò dovremo studiarle bene per scoprire se i pianeti che scopriamo sono abitabili. Gli esopianeti sono troppo lontani per mandarci delle sonde, come facciamo con Marte o le lune di Giove, ma comunque gli scienziati possono studiarle da qua, guardando a come bloccano la luce.

Continua a leggere

Cos’è un pianeta abitabile

Giusto pochi giorni fa, la NASA ha annunciato la scoperta di ben sette pianeti rocciosi di dimensioni simili a quelle della Terra in orbita attorno alla piccola stella TRAPPIST1, tre dei quali sembrano essere nella “zona abitabile”. Insomma, abbiamo trovato la casa degli alieni?

 

Continua a leggere

2 domande difficili sulle onde gravitazionali (con cagnolini!)

Sembra ieri, ma è già passato un anno da quando gli scienziati di LIGO hanno annunciato di aver trovato le sfuggenti onde gravitazionali, che stirano e comprimono lo spazio (anche se di poco) al loro passaggio.

Ma cosa vuol dire “stirano e comprimono lo spazio”? e come si misura una roba del genere? Per rispondere a queste importantissime, difficilissime domande, mi serve un po’ di pucciosità.Continua a leggere

Perché i razzi sono dipinti a quel modo?

Qualche mese fa, durante una pausa ad una conferenza, ho incontrato un’interessantissima giovane ingegnere*. Mi ha raccontato che lavorava per SpaceX (quelli di Elon Musk, coi razzi riutilizzabili), e in particolare nel team che si occupa di verniciare i razzi. Non abbiamo parlato a lungo, per cui mi è rimasta un po’ la curiosità: veramente serve un team di ingegneri per verniciare un razzo?

A quanto pare, è sempre servito.

Continua a leggere

Wormhole: tunnel attraverso lo spazio

Storie di fantascienza come The Martian o Black Mirror parlano di tecnologie quasi a portata di mano, come andare su Marte. Altre volte è roba più azzardata: è il caso dei wormholes. Però, siccome la relatività generale non li vieta del tutto, continuano ad affascinare scienziati ed autori.

Un esempio di un wormhole che collega due regioni di uno spazio bidimensionale. credit: telegraph.co.uk

Un wormhole (letteralmente, buco di verme) è un tunnel spaziotemporale, una scorciatoia tra due regioni lontane dello spazio-tempo. Il film Interstellar aveva molti difetti, ma la fisica era quantomeno plausibile (grazie alla supervisione della star della fisica Kip Thorne). Infatti spiegano efficacemente l’idea del wormhole: prendete un foglio e piegatelo, poi fateci un buco. Avete creato un wormhole nel vostro universo di carta.

L’entrata, in teoria, dovrebbe avere l’aspetto di un buco nero, un buco in cui luce e materia spariscono per sempre. L’uscita sarebbe l’opposto: una sorgente eterna di luce e materia—un buco bianco. Attraverso un wormhole, si potrebbero coprire distanze immense in tempi relativamente brevi, ma probabilmente non viaggiare nel tempo*.

Quindi, esistono?

Di sicuro non possiamo costruirli. Fare un wormhole con la carta è carino, ma funziona solo perché il foglio ha due dimensioni mentre noi siamo a nostro agio con tre. Per creare un vero wormhole dovremmo lavorare in quattro dimensioni. Auguri.

È anche poco probabile che esistano grossi wormhole naturali. Prima di tutto, almeno vedere una volta un buco bianco darebbe qualche indizio in quella direzione, ma non è mai mai successo. Poi, per tenere aperto un wormhole abbastanza grande serve qualcosa che cambi la gravità da una forza che attrae le cose una verso l’altra ad una che le spinge via. E pure quello non si è mai visto.

Ad ogni modo, trovo fico che possiamo immaginare qualcosa di così assurdo e, grazie al potere della fisica, fare ragionamenti seri e fondati su come potrebbe o no funzionare, anche se non l’abbiamo mai visto.

Una simulazione di come apparirebbe un wormhole tra l’università di Tübingen (Germania) e le dune di Boulogne (Francia). CC-BY-SA CorvinZahn/Gallery of Space Time Travel, via commons

Per saperne di più
  • È pieno di spiegazioni più o meno accurate dei wormhole in giro. A me è piaciuta questa, piuttosto matematica, su Chalkdust
  • La NASA ha fatto un lavoro eccellente per dare risposte serie ad ogni genere di domanda sui wormhole su questa pagina
  • Secondo alcuni, i buchi neri sono l’entrata di wormhole per altri universi. Forse, forse no. I buchi neri sono ben strani!

* MINI SPOILER: Ok, in Interstellar, Cooper fa una specie di viaggio nel tempo. Ma quello succede solo all’interno di altre dimensioni: ci siamo già spostati nell’ambito della magia.

Foto copertina: CC0 Pexels/pixabay

Bastano due equazioni per andare sulla Luna

“Andare sulla Luna sembrerà difficile ( credo ne abbia parlato qualcuno), ma in realtà tutto quel che serve sono due semplici regole. Entrambe scoperte dal famoso fisico e stronzo Isaac Newton, che compirà gli anni durante le vacanze… ad un certo punto.

Che bell’omino festivo! credit: csamuel.org

La prima regola è la maestosa a=F/m (probabilmente meglio nota come F=ma). Vuol semplicemente dire che, dividendo l’intensità di una forza (F) che spinge su un oggetto per la massa (m) dell’oggetto, si ottiene di quanto lo si accelera (a). È una formula che vale per tutto, ma in particolare ci dirà come si muove il nostro razzo, quindi è abbastanza importante per il nostro viaggio.

A proposito di razzi, questa formula sta dietro a come i razzi si muovono. La propulsione a razzo, infatti, si basa su quella strana faccenda della “reazione uguale e contraria”, che probabilmente avete sentito.

Se gonfiate un palloncino e lo lasciate andare, vola via facendo un rumore buffo perché l’aria all’interno viene spinta fuori dalla pressione. Però, se consideriamo il palloncino e l’aria assieme, non ci sono nuove forze che iniziano ad agire quando lasciamo la presa. Insomma F=0. Siccome il palloncino spinge l’aria fuori, dev’esserci una forza altrettanto intensa (uguale) che spinge dall’altra parte (contraria) che spinge dall’aria al palloncino. I razzi funzionano uguale, solo che hanno un sacco di tecnologia figa per farlo in maniera più efficiente.

CC-BY-ND mfrascella/flickr

L’altra equazione che Newton ci regala per il viaggio è quella per calcolare la forza di gravità. Che è stato un colpo di genio totale. Ed è abbastanza importante per noi, perché la gravità è il grosso della forza che ci troveremo davanti nello spazio. Quella della Terra, che ancora il razzo al suolo o lo strattona giù dal cielo, e quella della Luna che lo tira a destinazione. Conoscendo come funziona la gravità possiamo iniziare a tracciare la nostra rotta.

Facile no?

Mica tanto: gli astronauti—piloti di caccia con diplomi da ingegneri!—devono seguire corsi apposta per imparare a pilotare le navette spaziali. Prima ancora di arrivare a quello, dovremo costruire la navetta. Dovrà avere abbastanza spinta da sfuggire alla Terra, ma essere abbastanza solida da non esplodere mentre lo fa, e riportarci indietro tutti interi e non abbrustoliti.

Per questo Newton non è andato nello spazio.

Il cuore dei viaggi spaziali è comunque nelle sue equazioni. Tutta la ricerca di tutte quelle persone intelligentissime nelle agenzie spaziali: è tutta per migliorare come usiamo queste due semplici regole.

Grazie e buon compleanno, genio insopportabile!

E buon Natale a tutti!
Per saperne di più
  •  Se vi capita, guardatevi il terzo episodio di Cosmos: non avete sentito spiegare il lavoro di Newton sulla gravità se non ve l’ha raccontato Neil deGrasse Tyson.
  • Se vogliamo andare più lontano, invece, serve ben altro
  • La tecologia spaziale potrebbe non aver più bisogno di Newton tra un po’. Ma è tutto ancora molto vago, e francamente piuttosto strano.

 

Foto copertina: CC0 27707/pixabay