Microscopiche macchine, piccoli numeri, grandi problemi

Cosa succederebbe se potessimo muovere le cose atomo per atomo? Sono decenni che gli scienziati immaginano risposte. E mestieri per i nanorobot, le microscopiche macchine in grado di farlo: ripulire perdite di petrolio, consegnare medicinali esattamente dove serve nel corpo, o distruggere con precisione cellule tumorali.

Le macchine molecolari sono la cosa che più si avvicina a realizzare questo sogno. Ma arrivarci è stato un lungo e difficile percorso.Continua a leggere

Che diavolo è un bosone?

Che le particelle siano strane non è proprio una novità. Ad esempio, si comportano (in un certo senso) come se girassero come una trottola. Però non si stanno muovendo affatto. E anche se lo facessero, a provare ad immaginare come lo fanno probabilmente ci si scioglierebbe il cervello, tanto è inconcepibile. Fortunatamente c’è però una proprietà che misura questo trottolare (anche se nulla si sta muovendo) e si chiama “spin”.

Continua a leggere

Il mondo allo specchio dell’antimateria

Qua e là in libri, film o fumetti ogni tanto spunta la misteriosa antimateria. Spesso, si sta sul vago riguardo cosa sia e cosa faccia, rendendola la versione “scientificosa” della magia.

Una creatura di “antimateria” spunta in un vecchio episodio di Doctor Who. credit: doctorwhofromthestart.wordpress.com

Ma l’antimateria esiste: la conosciamo così bene da sfruttarla anche in medicina. La sua scoperta è uno dei più grandi successi della fisica teorica. Allo stesso tempo, però, ci ha creato un bel grattacapo.

Tra gli anni Venti e Trenta, i fisici cercavano di mettere d'accordo la Relatività Speciale e la Meccanica Quantistica. L’unico modo per farle funzionare era introdurre una nuova, strana materia, uguale alla materia normale, ma al contrario. Erano come due persone allo specchio. Sono uguali e si muovono allo stesso modo, ma se una alza la mano sinistra, l’altra alza la destra. In termini di particelle, se una ha carica positiva, o spin in su, o altro, l’altra ha carica negativa, o spin in giù, o comunque tutto all’opposto. Era più del riflesso della materia, era quasi il suo gemello malvagio: la chiamarono antimateria.

credit: a113animation.com

Il nome viene da dove pensate che venga: dall’essere il contrario della materia. Come tutti gli opposti, quando materia ed antimateria si incontrano, si annullano. Spariscono in un istante, trasformandosi in pura energia—un processo chiamato annichilazione.

L’antimateria non era solo un trucco matematico: ben presto gli scienziati avvistarono le prime antiparticelle. Trovare l’antimateria fu un successo senza precedenti: la teoria aveva tracciato la via per scoprire un universo mai visto.

Ma perché era rimasto invisibile? Perché l’universo è di materia? Perché esiste? Non avrebbe dovuto annichilarsi* con un anti-universo uguale e contrario? Le leggi fisiche sono diversa per l’antimateria?

L’esperimento Alpha al CERN prova a rispondere almeno a quest’ultima domanda. Dopo essere riusciti a creare ed isolare degli atomi di anti-idrogeno—con anti-protoni, anti-elettroni e tutto—gli scienziati li hanno stimolati con luce laser. La reazione che hanno visto dall’anti-idrogeno è esattamente uguale a quella che conosciamo per l’idrogeno. Le leggi sembrano uguali anche per l’anti-materia.

Probabilmente siamo tutti di materia perché, dopo il Big Bang, ce n’era giusto un pochino di più. Da dove venga il microscopico equilibrio che ha regalato l’universo alla materia resta ancora uno dei più grandi misteri della scienza.

Una rappresentazione dello squilibrio materia-antimateria al Deutsches Museum di Monaco (Germania). La tanica di sabbia nera rappresenta l’antimateria all’origine dell’universo, quella bianca la materia—sono alte circa un metro, quella bianca contiene un singolo granello in più. credit: scilogs.spektrum.de

 

*Suona strano, ma quello è il verbo: materia e antimateria si annichilano.

Foto copertina: CC0 Julia Schwab/pixabay

The Big Bell Test: le particelle si parlano alle nostre spalle?

Il mondo quantistico è strano. Così strano che pure Einstein—che, penso siamo d’accordo, era un uomo piuttosto intelligente—aveva qualche problema a farci i conti.

Una cosa che proprio non gli dava pace erano le particelle nei cosiddetti stati entangled. Senza addentrarci troppo nei dettagli: se le misuriamo separatamente danno valori casuali ma, se li confrontiamo, li troveremo sempre in accordo tra loro.

Non importa quanto lontane siano le due particelle, è come se si comunicassero telepaticamente come rispondere. Veritasium lo spiega meglio in questo video.

Einstein proprio non voleva crederci. Pensava che quel che faccio io con la mia particellina qui non possa aver effetto sulla tua particella lì, specialmente non più veloce della luce. Che sembra molto ragionevole… ma è anche sbagliato.

Negli anni Sessanta, John Stewart Bell provò matematicamente che, se una teoria vuole riprodurre i risultati della meccanica quantistica (che, per la cronaca, sono giusti), deve lasciare che le particelle siano “telepatiche”. Questo, tra parentesi, vale anche per la Meccanica Quantistica, non solo per altre strane teorie alternative.

Nonostante esperimenti su esperimenti abbiano confermato che la Meccanica Quantistica fa come dice Bell, alcune altre persone molto intelligenti non sono convinte. Perciò diverse università, dall’Australia a Roma, da Monaco agli Stati Uniti, hanno messo in piedi un gigantesco esperimento collaborativo: il Big Bell Test ( capito il nome ora?). In ciascuna sede, hanno misurato coppie di particelle, controllando le previsioni di Bell che sarebbero state “telepatiche”. Più casuali sono i test, più è difficile fingere di essere telepatici (vale per persone come per le particelle), perciò le misure erano determinate a caso.

Ma estirpare ogni possibile connessione tra dati apparentemente “casuali” è veramente difficilissimo, così gli scienziati hanno chiesto l’aiuto del pubblico. Più di 100mila persone hanno giocato ad un gioco online: le loro scelte indipendenti e imprevedibili hanno deciso le misure da fare.

Com’è finita? È presto per dirlo, ma dai risultati preliminari… come dire… mi dispiace, Albert: capita anche ai migliori.

john_stewart_bell_dealwithit

John Bell — deal with it. (CC-BY-SA, modifications by me, click for original)

Per saperne di più
  • Stavolta ho allegramente sorvolato su un sacco di roba. A mia difesa, ci sono interi libri scritti più o meno attorno a questo specifico problema. Personalmente, mi piace molto questo
  • Se non avete tempo di sciropparvi il libro, quelli del Big Bell Test hanno messo assieme una playlist con spiegazioni dai migliori youtuber di divulgazione

 

Foto copertina: CC0 Michael Schwarzenberger/pixabay

Come si cercano le particelle

Magari avete sentito le notizie di quest’estate che il CERN non ha poi trovato la particella che si pensava avessero trovato. E magari vi ha fatto realizzare che il processo con cui “si trovano le particelle” non è per niente chiaro. Fortunatamente Abstrusegoose (riposi in pace) qualche tempo fa fece una bellissima striscia, piuttosto illuminante su come funziona la fisica delle alte energie.

L'analogia funziona anche con le rane. O meglio, non funziona. Comunque, non provateci per favore! credit: abstrusegoose.com

Come dice abstrusegoose, gli ex fisici delle particelle sono i peggiori biologi. L’analogia funziona anche con le rane. O meglio, non funziona. Comunque non provateci per favore! credit: abstrusegoose.com

Anche se un po’ vago sui dettagli, il processo è più o meno quello*, solo che si usano protoni (o altre particelle) al posto delle rane. In breve: li si spara fortissimo uno contro l’altro e si vede cosa ne esce.

Protoni e rane, però, hanno alcune fondamentali differenze, e due in particolare sono cruciali per noi. Primo: un protone non è un oggetto solido, non ha nulla “dentro” (e non ha un “dentro”, se è per quello). Secondo, rimettendo insieme i pezzi delle rane, otterremo di nuovo le due rane. Nulla meno (se siamo molto bravi a raccogliere i pezzi), ma sicuramente nulla di più. Per le particelle è tutta un’altra storia.

Gli acceleratori come LHC spingono le particelle quasi alla velocità della luce. Siccome la massa può diventare energia e viceversa, l’inimmaginabile energia liberata quando le particelle si scontrano può produrre ogni sorta di cose nuove ed esotiche che non c’erano prima. E può avere molta più massa di quella con cui siamo partiti: più veloci sono i nostri protoni, più massa ha la roba che esce. Il bosone di Higgs, ad esempio, è stato scoperto scontrando coppie di protoni, ma ha 60 volte più massa. Sarebbe come se, scontrando due rane, uscisse qualcosa delle dimensioni di un bambino delle elementari.

Tuttavia, queste particelle formate nella collisione non si possono vedere direttamente, in parte perché restano lì davvero pochissimo. Mooolto meno di un miliardesimo di secondo dopo la collisione sono già decadute, sparando fotoni e particelle più piccole in ogni direzione.

Avete presente quelle belle immagini con tutte le linee colorate che pubblicano i laboratori di fisica delle particelle? Ecco, quelle linee sono la traiettoria di questi detriti sparati fuori.

alice-proton-lead

I prodotti di una collisione nell’esperimento ALICE del CERN. Credit: home.cern

Quella è la roba che i fisici studiano davvero. Ci sono rivelatori tutto intorno al punto della collisione per misurare e tracciare e contare quanto di quale tipo di ciarpame subatomico è uscito e dov’è andato. Sapendo come decadono varie particelle, gli scienziati setacciano i dati e risalgono a cosa è successo subito dopo la collisione.

Quando trovano troppo o troppo poco di qualcosa inizia il divertimento, perché potrebbe significare che si era formata una nuova particella sconosciuta. Perciò tutti si erano agitati per i dati del CERN lo scorso anno. Oppure potrebbe significare che i modelli che ci dicono cosa aspettarci dai decadimenti sono sbagliati, che comunque è interessante. Oppure potrebbe voler dire che si sono formate le solite particelle e, per caso, sono decadute più spesso in un modo piuttosto che in un altro. Questo è quello che è poi successo coi dati del CERN: quando hanno analizzato più collisioni, la media è tornata dove ci si aspettava. Niente nuova particella.

Per saperne di più
  • Sotto sotto, la massa è più complicata della quantità di materia in un oggetto. Magari ne scriverò. Per ora, andatevi a vedere questo bel video con Sean Carrol che esplora questi aspetti
  • Come si fa a vedere i prodotti della collisione: il CERN spiega come funzionano i suoi rivelatori

Foto copertina: LHC, CC-BY-NC-ND UCI UC Irvine via Flickr. Some rights reserved.

*Osservazione del fisico pedante: l’acceleratore di rane non è un collider e LHC non funziona proprio così. Ma va anche bene così: sta pur sempre usando delle rane!

(La particella di) Dio non esiste

Il 4 luglio 2012, il CERN (l’Organizzazione Europea per la Ricerca Nucleare) annunciò di aver trovato le prove dell’esistenza di una nuova particella: il famigerato bosone di Higgs.

Purtroppo, molti hanno conosciuto questa meravigliosa particella come “particella di Dio”. L’etichetta— non particolarmente popolare tra i fisici—gli è rimasta attaccata dall’accattivante titolo di un libro del premio Nobel Leon Lederman (che, pare, ne volesse uno molto diverso). Questo nome ha creato molta confusione, dato che (una volta per tutte) Dio non c'entra proprio nulla.

Peter Higgs, CC-BY Bengt Nyman via Flickr.

Il bosone di Higgs deve il suo nome al fisico Peter Higgs, che ha teorizzato la sua esistenza negli anni ’60.

La sua teoria prevedeva un processo—fantasiosamente chiamato “meccanismo di Higgs“—che chiudeva l’ultimo buco rimasto nel Modello Standard, la grande teoria che raccoglie più o meno tutto quello che sappiamo delle particelle e le loro interazioni. Peraltro un buco piuttosto significativo: il meccanismo di Higgs fa in modo che le particelle elementari, come elettroni e quark abbiano massa. Sembra trascurabile: in fondo, tutti gli elettroni del nostro corpo messi assieme hanno una massa di appena qualche grammo. Però, come spiega (nel video sotto), Josh Bendavid del MIT,

Questo è assolutamente fondamentale per la nostra stessa esistenza, perché se l’elettrone non avesse massa, non potrebbe essere legato ad un protone e non si potrebbero formare gli atomi. E allora le stelle, i pianeti, la chimica, la vita non potrebbero esistere.

Trovare il bosone era la verifica sperimentale della teoria, che ha lanciato Higgs e il suo collega e co-autore della teoria François Englert al premio Nobel per la fisica 2013*.

Dopo questo successo, il grande acceleratore (il famoso LHC) usato per gli esperimenti è stato potenziato ulteriormente, passando da essere il più potente acceleratore del mondo ad essere di gran lunga l’acceleratore più potente. Tra i suoi ambiziosi obiettivi per il futuro c’è cercare una spiegazione per la materia oscura.

Mentre il CERN dà la caccia alle prossime grandi risposte, questa settimana vale la pena festeggiare il loro più grande risultato.

 

Foto: LHC – ALICE Detektor, CC-BY-SA Frank Weber, via Flickr. Some rights reserved.

*Correzione: Il post aveva erroneamente identificato le collaborazioni dietro agli esperimenti ATLAS e CMS del CERN come co-vincitori del Premio Nobel.

La porta del mondo microscopico

Alla Domenica Sportiva tedesca fanno un gioco in cui il concorrente deve fare goal tirando in una porta da calcio quasi interamente coperta. Farlo con un pallone è difficile, ma farlo con delle particelle ha rotto la fisica dell’Ottocento.

Rendiamo il gioco più semplice: diciamo che, invece dei due buchi, abbiamo due fenditure alte quanto lo schermo. Ora mettiamo un muro bianco dietro lo schermo, tiriamo un sacco di volte e guardiamo dove il pallone lascia le impronte sul muro. Chiaramente, disegneranno grosso modo la forma delle fenditure.

Il gioco ha senso solo se le aperture sono poco più grandi del pallone: troppo piccole e diventa impossibile, troppo grandi e son capaci tutti. Allo stesso modo, facendo le fenditure piccole abbastanza, possiamo farlo con delle particelle.

In un esperimento, per esempio, ogni secondo un elettrone veniva “calciato” verso uno schermo esattamente come quello che ho descritto (che coincidenza!). Questo video mostra le loro impronte.

Non proprio la forma delle due fenditure, eh? Ogni elettrone si comporta come se passasse da entrambe le fenditure contemporaneamente, come se interferisse con se stesso.

Questo dimostra che un elettrone può essere in “una sovrapposizione di stati di posizione”, che è come i fisici pomposi dicono “può stare sia qui che lì”. La capacità delle particelle microscopiche di essere in stati sovrapposti, di essere qualcosa e qualcos’altro contemporaneamente, si chiama principio di sovrapposizione.

È solo una delle strane regole del mondo microscopico, che cerchiamo di scoprire da un secolo. C’è ancora tanto che non sappiamo, ma questo prodigioso viaggio è appena iniziato.

Foto: Torwand!, CC-BY-NC Mika Meskanen, via Flickr. Some rights reserved.

Gattini e no

C’è scatola sigillata con dentro un gatto e un marchingegno in grado di ucciderlo appena un atomo radioattivo decade. Se aprissimo la scatola, troveremmo il gatto vivo o morto? E come sta il micio finché la scatola è chiusa?

Si tratta, in estrema sintesi, dell’esperimento (mentale: nessun gatto è stato maltrattato!) del “Gatto di Schrödinger“, che prende il nome dall’eminente fisico Erwin Schrödinger, uno dei padri della fisica quantistica. Come forse avrete sentito dire, finché non apriamo la scatola, il gatto è simultaneamente sia vivo che morto.

Il motivo di questa stranezza è uno dei principi fondamentali della meccanica quantistica: il principio di sovrapposizione. Semplificando, nel microscopico mondo dei quanti, alcune proprietà possono avere più valori contemporaneamente. Ad esempio, un elettrone può essere in due posti allo stesso tempo. Almeno finché non andiamo a misurarlo. Allora, in un certo senso, “decide” dove farsi trovare. E non è solo un’illusione, finché non lo cerchiamo l’elettrone è veramente in più posti.

Il principio di sovrapposizione funziona. Davvero. Hanno fatto degli esperimenti. La natura microscopica descritta dalla teoria quantistica è, quindi, profondamente diversa da quella macroscopica classica a cui siamo abituati.

Le regole del nostro mondo macroscopico non funzionano quando parliamo di particelle microscopiche e le regole quantistiche non valgono per i gatti. Usando le regole di un mondo nell’altro porta a paradossi: un gatto non può essere sia vivo che morto, e un atomo può essere sia decaduto che no.

Proprio qui mirava Schrödinger piazzando un oggetto quantistico (l’atomo radioattivo) assieme ad un oggetto classico (il gatto). E questa è la meraviglia e la “magia” del mondo quantistico: è tutto diverso e governato da leggi diverse.

Foto: Cat CCTV, CC-BY-SA Takashi Hososhima, via Flickr. Some rights reserved.