Come fingere di essere colorati

Questa farfalla non è blu.Continua a leggere

Barzellette… quantistiche?

Vi direi una barzelletta sulla chimica, ma non otterrei nessuna reazione.

Continua a leggere

Il drago assetato e altre magie della capillarità

Il magnifico drago spinoso. Credit: wikimedia

C’era una volta un drago che viveva nel deserto ed amava mangiare formiche. Ne era così ghiotto che per loro rinunciò all’abilità di bere, rendendo la propria bocca ottima per mangiare ma incapace di prendere sorsi.

Al suo posto aveva imparato qualcosa di meglio: come strappare acqua dalla sabbia stessa evocando una forza più potente della gravità.

Continua a leggere

Malattie idee ed evoluzione

Capita a tutti di ammalarsi. E quando succede, c’è una certa probabilità di trasmettere la nostra malattia agli altri, che poi la trasmetteranno ad altri ancora e così via. Finché non passa l’ondata.

CC-BY Tina Franklin/flickr

Si può descrivere matematicamente come la malattia si diffonde. Per esempio, possiamo scoprire quanto contagioso deve essere un virus perché diventi una vera epidemia, o quali categorie di persone hanno più probabilità di venirci a contatto. O come l’ondata di ammalati spazzerà la popolazione.

Anche i computer spargono virus: qualcuno apre stupidamente un allegato e il loro computer si infetta. Il virus si replica e inizia a tempestare tutti i suoi contatti con email infette per diffondersi. Ma i computer spargono anche un altro tipo di infezione: idee.

Tutti quanti vediamo post e notizie sui social. Qualche volta, poi, condividiamo quello che abbiamo visto coi nostri amici, che potrebbero condividerlo coi loro e così via. Se si diffonde abbastanza, poi, quel puccioso video di gattini che abbiamo condiviso diventa… beh… virale.

Lo stesso modello matematico che descrive genericamente come si diffondono i germi nella rete dei nostri conoscenti lo si può usare pure su reti di computer o i social network. L’idea è esattamente la stessa.

C’è anche un’altra cosa che possiamo diffondere nella nostra popolazione: i nostri geni. Come le malattie e le bufale, anche i geni si spargono (col passare delle generazioni), in continua competizione per accaparrarsi le limitate risorse a disposizione. E come i geni, anche i post accattivanti e i virus mutano ed evolvono, cercando il modo più veloce di moltiplicarsi. Qualunque esso sia.

Prima della follia di PenPineappleApplePen, del Rickrolling, e di Doge—in realtà, molto prima di internet proprio—il famoso biologo Richard Dawkins coniò il termine meme. Descrive proprio quello che sono i memi su internet: “un’unità di imitazione culturale“, un elemento concettuale che si replica e diffonde nella popolazione, come fa un gene.

Sebbene le idee di base sulla diffusione di malattie e idee siano molto vecchi, il mondo reale è—come al solito— più complicato. Perciò matematici e fisici lavorano sodo per trovare descrizioni migliori e più realistiche, con cui difenderci meglio dall’influenza… ma anche dalle bufale.

Per saperne di più
  • Un team italiano ha pubblicato di recente un esempio di queste descrizioni più realistiche: una descrizione efficiente di virus e memi all’interno di intricate popolazioni.
  • Un articolo di uno scrittore un po’ nerd sulle epidemie non può dirsi completo se non si nomina almeno una volta Pandemia
  • Un paio d’anni fa, CGP Grey ha descritto piuttosto in dettaglio come i memi si evolvono su internet

 

Cover photo: CC0 Myriam/pixabay.com

La magnetica scienza delle elezioni

Elezioni e referendum sono roba complicata: un mucchio di persone devono decidere cosa fare, ci sono tantissimi fattori che entrano non gioco. Insomma, sembra pressoché impossibile per la fisica capirci qualcosa. Sfida accettata!

credit: wikimedia

credit: wikimedia

Certo, non è possibile capire cosa passa per la testa a ciascuno di noi. Ma se mettiamo assieme abbastanza persone, si può capire cosa succede a livello collettivo. L’idea è simile a come si estrapolano cose come la temperatura e la pressione dell’aria in una stanza, tralasciando cosa faccia ogni singola molecola.

I fisici hanno usato una quantità di modelli per sbrogliare la matassa elettorale e descrivere un sacco di cose, dall’affluenza alle urne alla performance dei candidati. Inizia tutto da come prendiamo posizione, e il modo più semplice di descriverlo sono i magneti.

ising

Spin su una griglia, quelli opposti ai loro vicini (collegamenti rossi) sono meno stabili e tendono a rovesciarsi per allinearsi (collegamenti verdi).

Il modello per descrivere come i magneti “scelgono” come mettere i poli è un pilastro fondamentale della cosiddetta meccanica statistica. Prendiamo un numero di spin, piccoli aghi di bussola magnetici, e diciamo che possono puntare “in su” o “in giù”—votare sì o no ad un referendum, volendo. Ognuno di loro ha un piccolo campo magnetico, e tutti si influenzano a vicenda, cercano di allinearsi ai loro vicini o di farli allineare a sé. Allo stesso modo i nostri amici, parenti e conoscenti talvolta ci convincono delle loro posizioni, oppure noi convinciamo loro.

Ovviamente, prendere decisioni è immensamente più complesso di così—e anche il magnetismo, comunque. Tuttavia possiamo usare questo modello per isolare l’effetto di diversi fattori. Prendiamo ad esempio i social media e la famigerata “bolla”.

play-stone-1237457_640

Credit: Gerd Altmann/pixabay

Facebook ( ma non solo) mostra a ciascuno di noi preferenzialmente cose con cui siamo d’accordo, e fa sparire il resto. Nei termini dei nostri spin, è come se si tagliassero i collegamenti con vicini che puntano dalla parte opposta. L’effetto è che si formano blocchi di spin tutti allineati, in cui nessuno sente l’altra campana. La società si spacca in due. Suona familiare?

ising_bubble

Collegamenti selettivi spaccano in due la società degli spin, creando blocchi isolati di individui testardamente d’accordo tra loro.

È un esempio molto semplificato (di un effetto piuttosto semplice, tra l’altro), che però mostra come i modelli possano isolare effetti diversi. Perciò possono anche dirci quali manopole possiamo girare per cambiare il clima elettorale e la discussione.

Ovviamente questo non vuol dire che abbiamo risolto il comportamento umano: è importantissimo ricordare che questi sono modelli super-semplificati, e che ci sono tantissime cose che entrano in gioco in votazioni reali. Più le scienze sociali e quelle naturali si parlano, più questi modelli e i loro risultati miglioreranno.

Nel frattempo, votate.

Per saperne di più

 

Foto copertina: CC0 Andreas Breitling, via pixabay.com

Il suono del silenzio

Pensate al posto più silenzioso dove siate mai stati. Ora pensate ad uno ancora più silenzioso. Che rumore fa? Difficile da immaginare, ma fortunatamente la fisica ci può aiutare, ma dobbiamo iniziare da come funziona il suono.

Altoparlanti, corde vocali e strumenti funzionano tutti con lo stesso principio: spingere e tirare l’aria ritmicamente. Le molecole di aria, poi, spingono e tirano le loro vicine, che spingono sulle loro vicine, e così via. L’aria quindi si stira in alcuni punti e si comprime in altri, creando un’onda di pressione. Così nasce un’onda sonora.

Molecules of air

Molecole d’aria che se ne stanno buone, in realtà, si muovono un sacco. CC-BY-SA Greg L, via Commons

Ma se non c’è nulla a muovere l’aria e produrre i suoni? Che rumore fa il silenzio? Esiste o è come chiedersi il colore di una cosa invisibile?

Le molecole d’aria si scontrano tra loro e vibrano di continuo. Semplicemente perché ha una temperatura, l’aria crea per forza microscopiche variazioni di pressione qua e là. Anche il posto più desolato, remoto e tranquillo ha un suono: il suono del silenzio.

Queste collisioni tra molecole sono piuttosto casuali ed indipendenti tra loro. Il suono che producono—il silenzio—è rumore bianco, quello che alcuni usano per rilassarsi o concentrarsi.

L’intensità del silenzio dipende da che finestra di frequenze consideriamo: più è sottile, meno tipi di scontri tra molecole troviamo, e più silenzioso apparirà il silenzio.

Secondo alcuni calcoli, nella fascia in cui gli umani sono più sensibili (attorno all’altezza della nostra voce), l’aria che se ne sta lì fa -20 decibel di rumore. Piuttosto silenzioso. Troppo per noi: è appena udibile per un gufo, un predatore super-specializzato nel silenzio, con un orecchio grande letteralmente quanto la sua faccia.

That big circle around an owl's face funnels sound: it's basically a giant ear. CC-BY-NC-ND Brian Scott/flickr

La faccia del gufo convoglia tutto il suono dall’ambiente: in pratica è un gigantesco orecchio. CC-BY-NC-ND Brian Scott/flickr

Se, invece, consideriamo tutta la gamma dell’udito umano, il silenzio si fa molto più rumoroso: circa 0 decibel, che è anche più o meno l’intensità più bassa che possiamo percepire, è circa 3 volte più flebile del rumore di un respiro..

Perciò, il nostro udito può gestire qualcosa appena appena più di silenzio totale, tanto quanto una conversazione—mille volte più rumorosa. Suona bene.

Per saperne di più
  • Come fanno 60 decibel ad essere mille volte più di zero? è che i decibel sono un po’ strani: qui c’è un riassunto di questa ed altre particolarità
  • Che vuol dire “rumore bianco”? Può essere di altri colori?
  • Secondo alcuni il silenzio totale rende pazzi. Agli scienziati non basta sentirlo dire. Devono provarci.

 

Foto copertina: CC0 Sam Halstead, via pixabay.

Un po’ d’ordine sui terremoti in Italia

Da dove vengono i terremoti

I movimenti del mantello che spostano le placche tettoniche. Credit: NASA/wikimedia

Introduzione obbligatoria, ma la farò breve perché la storia l’avrete sentita in ogni salsa.

Noi viviamo sulla superficie della crosta terrestre: uno strato di roccia solida che galleggia su roccia meno solida (il mantello). La crosta è divisa in pezzi, chiamati placche tettoniche, che si muovono mooolto lentamente spinti dal mantello sottostante.

Muovendosi, le placche si scontrano, sfregano, e scivolano una sull’altra ma, per via dell’enorme attrito tra le rocce, lo fanno in serie di brevi scatti—i terremoti. Durante il terremoto, la tensione che si era accumulata tra due placche si scarica e arriva in superficie come vibrazioni.

Pensate alla vibrazione che sentite sulla mano trascinando una sedia pesante: anche quella viene dal rilascio di sforzo generato dall’attrito.

Le faglie e il parmigiano

Le placche tettoniche somigliano, per certi versi, ad enormi pezzi di parmigiano. Anche i pezzi di formaggio, infatti, scorrono poco uno sull’altro e si fratturano tra mille pieghe e crepe. Per il parmigiano si tratta di pochi secondi e possiamo farlo con le mani, per la Terra sono millenni di forze inimmaginabili; per il parmigiano sono briciole, pieghette e piccole crepe, per la Terra massi, montagne e crepe—o faglie.

Ok, ho barato: questo è grana padano. CC-BY-SA Marco Assini/Flickr

Ok ho barato: questo è grana padano. L’idea è la stessa. CC-BY-SA Marco Assini/Flickr

Questa mappa interattiva mostra benissimo quanto sia frastagliato il sistema di crepe in Italia. Come nel parmigiano, infatti, anche nella roccia nessuna faglia è sola. E quando si sposta qualcosa, si sfoga lo stress accumulato in un punto, ma mettendone sotto sforzo un altro, solitamente lungo una faglia vicina.

Per questo i terremoti avvengono spesso in sequenze sismiche: serie di terremoti consecutivi in zone vicine, che fanno parte dello stesso sistema di faglie vicine. Purtroppo, però, i sistemi sono estremamente intricati e non si può sapere quali zone saranno colpite dal prossimo terremoto né, men che meno, quando.

Come si muove l’Italia

I nostri Appennini sono la giuntura tutta crepe e pieghe tra due pezzi di crosta terrestre/parmigiano in movimento. Più precisamente, il versante adriatico scivola verso est, quello tirrenico verso ovest: in pratica, l’Appennino si divarica.

Il motivo—lo si sente dire sempre—è che la placca africana e quella europea spingono una contro l’altra. Un momento! Ma non dovrebbe schiacciarsi l’Italia allora? Perché si divarica?

Qui ero confuso pure io, ma ho trovato questa mappa che mostra la stranissima forma delle placche. La placca africana comprende circa metà dell’Italia (ironicamente, anche molta Padania). Il movimento delle placche non sta schiacciando, bensì ruotando l’Italia, contemporaneamente strappandola nel mezzo.

La zona di confine tra la placca africana e quella eurasiatica, e come spingono una contro l’altra. Credit: INGV

Dal Friuli al Belice, passando per L’Aquila e Amatrice, tutti i nostri problemi sismici vengono da lì. Il moto delle placche tettoniche non si fermerà: l’unica cosa da fare è imparare a conviverci.

Per saperne di più

 

Foto copertina: CC0 Brett Hondow/pixabay

La fisica e le regole delle migrazioni

Cambia la stagione: è il momento per le oche, le rondini e tutti gli altri di cambiare aria. Con o senza noci di cocco.

Pensavate fosse terrotorio esclusivo della biologia, eh? Ma i fisici non sanno resistere quando trovano un problema interessante. O due…

La formazione a V

Diversi grandi uccelli migratori (oche, ma anche gru e pellicani a quanto pare) volano in formazione, con una tipica forma a V. Decisamente non il modo più intuitivo di andarsene in giro.

Migration

CC-BY Mike Lewinski/Flickr

Ma c’è un’ottima ragione per farlo: risparmiare energia. Tenere 5 chili di oca in aria è un lavoraccio di per sé, figuriamoci farli volare attraverso un oceano. Grazie alla formazione a V, però, si risparmia fino al 30% dell’energia.

Con un po’ di dinamica dei fluidi, gli scienziati hanno scoperto come funziona. Durante il volo, dalle ali si solleva una piccola corrente ascensionale, chiamata upwash.

Planes, too, create upwash vortices off their wingtips when flying. Credit: wikimedia

Anche dalle ali degli aerei si forma l’upwash. Credit: wikimedia

Per catturarla, basta stare appena sopra e un po’ a lato dellle ali dell’oca davanti a noi. Ma dovremmo stare alla sua destra o a sinistra? Facile: basta fare quello che hanno fatto quelli davanti. Così terremo un occhio su tutto lo stormo e prenderemo le correnti meno turbolente. Se tutti fanno così, il gruppo disegnerà automaticamente quell’inconfondibile V.

Lo stormo anarchico
Flock

CC-BY-NC Abraham Morales/Flickr

Lunghi voli nonstop non fanno per tutti, quindi non tutti gli uccelli hanno così bisogno di risparmiare energia. Alcuni, come gli storni, sono solo preoccupati di non diventare la cena di qualcuno. Per quello non servono formazioni, basta stare assieme.

Recenti studi (con l’università La Sapienza in pole position) hanno scoperto che questi stormi si muovono assieme senza che nessuno li coordini. Simulando il comportamento degli uccelli al computer, i fisici hanno scoperto che basta dar loro semplici regole da seguire—tipo “non schiantarti contro gli altri” e “vai dove stanno andando i tuoi vicini”, niente di incredibile—per creare stormi compatti che si muovono coerentemente.

Le regole, avrete notato, non sono granché specifiche, potrebbero applicarsi a qualsiasi cosa. È fatto apposta: agli scienziati non interessava nulla se stessero studiando stormi di uccelli, branchi di gnu, banchi di pesci o mucchietti di batteri. Con le stesse regole si trova lo stesso risultato.

Questa è la cosa affascinante di quando i fisici si intrufolano in altri campi: in mezzo al caos di parti che fanno cose diverse, loro scovano quei pochi piccoli ingranaggi che fanno muovere tutto. E capiscono cosa ogni problema ha in comune con altri, apparentemente completamente diversi. I fisici sono fighi.

 

Cover photo: Le tout, CC-BY-ND Eiimeon, via Flickr. Some rights reserved.

Gli auricolari devono aggrovigliarsi

weknowmemes.com

Ci siamo passati tutti: vogliamo ascoltare un po’ di musica, tiriamo fuori gli auricolari dalla tasca o dalla borsa e… ORRORE! nodi legati ad altri nodi in un groviglio impossibile.

Esiste un rimedio a questa orribile piaga? Secondo la fisica, no. Proprio no.

A quanto pare, le cuffie si annodano per una ragione semplice ma molto profonda. In sostanza, il filo ha pochissimi modi perché lo consideriamo “ordinato”, ma una marea per essere “annodato”. Anche se ognuno di questi è difficile da formare, a noi non interessa quali nodi si sono fatti, ma solo che ora dobbiamo star lì a sbrogliarli.

Quando mettiamo in tasca le cuffie e ce ne andiamo a spasso, il filo si agita e si mescola. In un certo senso, è come se “scegliesse” più o meno a caso una tra milioni e milioni di forme che ha a disposizione. Siccome quelle annodate sono enormemente di più, il filo finirà quasi di sicuro per essere annodato.

Nel 2007, due fisici americani hanno fatto degli esperimenti, e hanno verificato rigorosamente quanto era probabile formare i nodi (che, tra l’altro, ha a che fare con come si annoda in DNA nelle nostre cellule). Secondo loro, più lungo e flessibile è il filo, più è probabile che si annodi (hanno anche previsto quali nodi erano più o meno probabili).

Non a caso, tutti i trucchetti per evitare il problema cercano di limitare uno o più di questi fattori, ad esempio avvolgendo il filo attorno a qualcosa per accorciarlo e tenerlo fermo. Per di più, le cuffiette dei cellulari sono il caso peggiore in assoluto: lunghe, molto flessibili, si biforcano perfino, triplicando* la possibilità di annodarsi.

Sembrerà banale, ma i nodi nelle nostre cuffie non sono che una manifestazione dell’aumento dell’entropia. Tra le altre cose, questo principio è noto anche come “tutto tende spontaneamente al disordine” ed è quello che proibisce il moto perpetuo. Non male per un pezzo di filo da dieci euro.

CC0-Optimusius1/pixabay

CC0-Optimusius1/pixabay

Le cuffie aggrovigliate sono solo nella frangia fastidiosa di un gruppo di effetti, dal perché la pasta calda si raffredda, a perché la nostra libreria torna inevitabilmente disordinata dopo che l’abbiamo messa a posto, fino a perché sentiamo l’odore dei fiori in un campo. E non ci avventuriamo nella roba davvero esistenziale sul perché il tempo scorre in una direzione.

Perciò no, non possiamo risolvere il problema più di quanto possiamo arrestare lo scorrere del tempo. Ma almeno lo possiamo aggirare con pochi euro e un aggeggino di plastica… o aspettare che Apple lo estirpi alla radice (per molto di più).

 

Foto copertina: twisty (240/365), CC-BY Tim Pierce via Flickr. Some rights reserved.

*Se ci pensate funziona: le possibilità triplicano.

Tre curiosità estive (e mezza)

Perché non ci si abbronza dietro al vetro

pixabay.com

Dal sole ci arriva luce di ogni colore, anche quelli che non esistono. Prendiamo i raggi ultravioletti (o UV) che, come suggerisce sottilmente il nome, hanno una lunghezza d’onda più corta del viola. Questa luce è più viola del viola, che però è l’ultimo colore che siamo in grado di vedere: niente colori UV per noi.

I raggi UV possono danneggiare cellule, che si proteggono producendo melanina per proteggersi. Più melanina si ha, più la pelle è scura. Chi non ne produce tanta di suo può stimolarla mettendosi al sole, abbronzandosi.

Il vetro l’abbiamo inventato e perfezionato per vederci attraverso: ci interessava la luce visibile. Ma il fatto di essere trasparente cambia a seconda della lunghezza d’onda della luce. E infatti la luce UV non attraversa bene il vetro.

Meno luce UV vuol dire che la nostra pelle si preoccupa meno, e quindi non si abbronza.



Raffreddamento estremo coi laser

pixabay.com

Quando pensiamo ai laser, probabilmente pensiamo a laboratori, scintille, fumo, pistole laser, spade laser… Il freddo, insomma, non è in cima alla lista. Ma per raffreddare davvero qualcosa (e intendo vicino allo zero assoluto), il laser è uno dei modi migliori.

Se si va a vedere nel profondo della fisica, la temperatura esprime quanto veloce si stanno muovendo le cose. Ad esempio, l’aria in una stanza è fatta di tante molecole che si muovono di continuo, qualcuna più veloce, qualcuna meno. Più alta è la temperatura dell’aria, più alta è la media di queste velocità. Viceversa, meno si agitano le molecole, più bassa è la sua temperatura.

vescent.com

Solitamente raffreddiamo le cose mettendole a contatto con qualcosa di più freddo, e il rallentamento delle particelle arriva (in un certo senso) di conseguenza. Ma coi laser è diverso.

Semplificando molto, ci sono tre coppie di laser che si incontrano in un punto, dove abbiamo messo gli atomi da raffreddare. Perciò, se un atomo si muove in una certa direzione, va per forza incontro ad almeno un fascio laser, che è stato preparato in modo da cedergli un pochino di energia, spingendolo indietro.

Così ogni atomo è obbligato a stare praticamente fermo, e il gruppo di atomi si raffredda.

 

Perché il ventilatore fa fresco

CC-BY-SA haru__q/flickr.com.

 

Per lo stesso motivo per cui soffiare sul brodo lo raffredda. Ma andiamo in ordine.

Quando fa caldo sudiamo.

Le molecole di acqua nel sudore si agitano—qualcuna più veloce, qualcuna meno—e si scontrano tra loro di continuo. Quanto veloci vanno, come abbiamo visto, c’entra con la loro temperatura.

Deboli forze tra una molecola e l’altra le tengono vicine, e così l’acqua resta liquida. Ogni tanto, però, una molecola molto veloce può riuscire a sfuggire a queste forze, evaporando. La velocità media delle molecole rimaste indietro si abbassa, e così anche la loro temperatura.

Le molecole evaporate, tuttavia, non vanno molto lontano, così possono essere “catturate” dal liquido, rientrando nel gruppo. La superficie di ogni microscopica gocciolina di sudore, quindi, è un continuo andirivieni.

Il ventilatore soffia via le molecole evaporate, che così non possono essere ricatturate, sbilanciando il delicato equilibrio della superficie. In questo modo, sempre più molecole lasciano definitivamente le gocce di sudore, si portano via del calore e raffreddano la nostra pelle. Che è anche il motivo per cui il brodo si raffredda soffiandoci su.

… e perché l’afa peggiora il caldo

L’idea è la stessa del ventilatore, ma al contrario.

Più l’aria è umida, più acqua contiene. Perciò è anche più probabile che molecole d’acqua vengano catturate dalle gocce di sudore. L’equilibrio della superficie si sposta nell’altra direzione, il sudore evapora lentamente e il caldo ci resta addosso più a lungo.

 

Per saperne di più
  • Un sito di fotografia spiega quello che ci perdiamo a non vedere gli UV
  • Una simulazione interattiva per capire meglio la faccenda movimento-temperatura
  • La spiegazione più precisa del raffreddamento laser sul sito dell’Istituto Nazionale di Fisica Nucleare
  • Il grande Richard Feynman spiega più in dettaglio la storia del brodo e dell’evaporazione
  • Due cose in più su Sole, abbronzatura e scottature
Amorefisico va in vacanza! Ci risentiamo il 9 settembre
Buone vacanze!

 

Foto copertina: CC0 Counselling, via pixabay.com