Come si pubblica la scienza

La pubblicazione è una parte importantissima delle scienze, dalla fisica alla medicina. Ma se con “riviste” pensate ad una cosa tipo Espresso (o Cavalli e Segugi) siete fuori strada.

Continua a leggere

Dove finisce la temperatura

Tutti sappiamo cos’è la temperatura no? Cos’è caldo e cos’è freddo, e che le cose calde hanno una temperatura più alta. A guardarci bene, però, la temperatura è un casino. Ci sono anche diversi modi perché la sua stessa definizione, per quanto sembri intuitiva, vada all’aria.

Continua a leggere

Un post singolare

Potreste aver sentito che un buco nero “è una singolarità”. Se vi interessate di intelligenza artificiale, invece, potreste conoscere La Singolarità di quando verremo sorpassati dai robot. Perciò… ehm… robot dentro i buchi neri? In realtà ha tutto senso.

Continua a leggere

Cerchi, cerchie e Pi Day

Il 14 marzo (3/14 nel calendario anglosassone) è Pi Day, la giornata mondiale del pi greco. Durante questa buffa festività, i nerd della scienza di tutto il mondo fanno operazioni inutilmente complicate e mangiano torte (in inglese, si legge “pài” sia il numero che pie, torta) per festeggiare che il rapporto tra circonferenza e diametro di ogni cerchio è 3.14152653… Da fuori può lasciare disorientati, ma è un po’ quello il punto.

Continua a leggere

Tutta la fisica è sbagliata!

La Meccanica Quantistica ha torto. La Relatività Generale ha torto. Il Modello Standard della fisica delle particelle ha torto, torto, torto!

Tutta la fisica (diamine, la scienza in generale!) è sbagliata—un po’. E gli scienziati lo sanno! Ma niente panico: la scienza deve avere torto. Perché non cerca la Verità, piuttosto spiega quello che vediamo meglio che si può.

Potrebbero esserci cose nuove che non avevamo visto, o spiegazioni migliori per quelle che conoscevamo già.

Newton pensava che la gravità fosse una forza tra due oggetti con massa. Ci sta. A dirla tutta, è una spiegazione buona abbastanza per arrivare sulla Luna. Di certo non aveva mai pensato che la massa deformasse lo spaziotempo. Ma d’altra parte non aveva mai visto la gravità piegare la luce (anche se non ha massa) o cambiare lo scorrere del tempo. Einstein, con la sua Relatività Generale spiegava tutto, comprese queste cose, senza neanche averle osservate!

Si possono descrivere perfettamente le orbite di tutti i pianeti anche tenendo la Terra al centro. Però è complicato, e più sbagliato che farlo con la gravità di Newton. credit: wikimedia

Difatti una buona teoria deve prevedere fenomeni nuovi, mai visti prima. Prima di Newton, gli astronomi pensavano che stelle e pianeti si muovessero lungo cerchi attorno a cerchi, eccetera. Se qualcosa non funzionava, nessun problema: si aggiungeva un cerchio. Questo sistema descriveva ottimamente tutto, ma non poteva predire nulla. Le leggi di Newton, invece, ci hanno detto dove cercare Nettuno. Ed era là.

Se una previsione si rivela sbagliata, gli scienziati cercano una teoria che spieghi i nuovi dati, fanno nuove previsioni e il ciclo ricomincia.

Prima o poi arriverà qualcosa che darà definitivamente torto alla Relatività Generale. Se chiedete a me, credo che la materia oscura sia un buon campo di battaglia. Per avere ragione, ad Einstein serve che l’universo sia pieno di una sostanza invisibile e intoccabile. Gli sfidanti si stanno già facendo avanti.

Di cos’è fatto l’universo (secondo le nostre teorie): il 95% è materia o energia “oscura” (un modo figo per dire che non abbiamo idea di cosa sia). credit:nasa.gov

Come la Relatività, anche tutte le altre teorie cadranno. Nessuna teoria è perfetta, ma tutte quelle accettate sono meglio delle precedenti. In qualunque momento della storia (almeno da quando abbiamo il metodo scientifico), i dati di fatto scientifici sono le migliori spiegazioni del mondo che abbiamo mai avuto. E vale anche per le teorie attuali.

Tenere una mente aperta è importante, ma è anche importante tenere a mente perché i dati di fatto sono tali e il lungo viaggio che hanno affrontato per diventarlo. Ad aprire troppo la mente, si rischia di far cascare fuori il cervello.

Per saperne di più
  • Si possono scrivere libri interi sulle cose che non sappiamo ancora spiegare. Come ha fatto Jorge Cham.
  • Volete una spiegazione dettagliatissima di cosa funziona e cosa no riguardo alla materia oscura? C’è PBS Spacetime:

 

Foto copertina: Facepalm, CC-BY Brandon Grasley/flickr

Cosa fanno i numeri e cosa no

E così i sondaggi sulle presidenziali americane erano… diciamo non del tutto corretti. Non è neanche la prima volta quest’anno: pensiamo a Brexit o al referendum in Colombia. C’è qualcosa di storto nei numeri.

I numeri hanno di figo che danno sempre risposte obiettive e basate sui fatti. Nella scienza ci si fa una domanda, poi si va a misurare la risposta, che arriva sotto forma di numero. Quel numero è un fatto, che si può usare per provarne altri.

733949

Ma i numeri sono anche difficili, perché rispondono senza commentare la domanda. Era posta correttamente? Era stupida? Era quella giusta?

Se facciamo finta di aver chiesto qualcosa di diverso da quel che abbiamo misurato, o se cerchiamo di estrapolare dai numeri qualcosa di diverso, l’esercizio non ha senso. Ed è lì che le statistiche sembrano inventate.

Però non è colpa dei numeri. Il problema è chi li legge e cosa cerca. Il problema è la domanda.

Questo mi ha ricordato Guida Galattica per Autostoppisti. Nel libro, una razza di alieni super-intelligenti costruisce Pensiero Profondo, un incredibile supercomputer che deve cercare “la risposta alla vita, l’universo e tutto quanto”. Dopo milioni di anni di calcoli, la risposta arriva (guarda caso, sotto forma di numero), ma—spoiler moderato—è piuttosto deludente.

Come si vede nel video, la domanda era tanto importante quanto la risposta, indipendentemente da quanto vera (e non ho nessun dubbio che quella sia la risposta), accurata o oggettiva sia. E non si può essere molto più oggettivi di un valore numerico misurato accuratamente.

Qui arrivo al punto su sondaggi ed elezioni: i sondaggisti sanno quel che fanno. Sanno come tener conto di tutte le possibili aberrazioni e come misurare quello che ha sempre dimostrato di riflettere i risultati ai seggi. Ma non possono sapere se il voto andrà davvero così. Non è quella la domanda.

Quindi cos’è che non va? Non lo sappiamo, ma c’è un’orda di statistici molto determinati a scoprirlo.

Lo strabiliante potere dei numeri è rispondere esattamente a quello che chiediamo o, se la risposta non ha senso, mostrarci che c’è qualcosa che non va nella domanda. La strabiliante abilità degli scienziati è trovare le giuste domande e formularle nel modo giusto.

Per saperne di più
  • Una rassegna sul Post di cose che potrebbero andare storte nei sondaggi

Foto copertina: CC0 Andrew Martin, via pixabay

Una stella come le altre?

Pensateci: l’idea che il Sole sia essenzialmente la stessa cosa di una stella qualunque non ha nessun senso. Voglio dire, basta guardarli: non potrebbero essere più diversi!

Seriamente. Vi sembrano la stessa cosa? credit: CC-BY-ND Jessie Hodge via flickr

Seriamente. Vi sembrano la stessa cosa del Sole? credit: CC-BY-ND Jessie Hodge via flickr

Come cavolo abbiamo fatto a convincerci di una cosa così stravagante?

Beh, è stato un lungo viaggio, partito da una serie di supposizioni più o meno strampalate di “scienziati” dell’antichità. Qualcuno ci ha pure relativamente azzeccato, ma altri parlavano di pietre incendiate appiccicate in cielo.

Il primo passo davvero scientifico l’abbiamo fatto nel 1838, imparando quanto incredibilmente lontane siano le stelle. Quell’anno, l’astronomo (tra le varie occupazioni) tedesco Friedrich Bessel fu il primo a misurare la distanza di una stella, ora nota come 61 Cygni. Il risultato? Era migliaia di volte più lontane del Sole. Centinaia di migliaia di volte.

Se sono così lontane, si pensò, potrebbero essere anche altrettanto grandi, se non di più ( spoiler: alcune sono molto più grandi). Ok, ma sono la stessa cosa?

Pochi anni dopo abbiamo imparato a leggere la composizione chimica di una stella dalla sua luce. Gli elementi al suo interno, infatti, assorbono la luce in modi caratteristici. Guardando la luce attraverso un prisma, vediamo le sottili strisce scure che si lasciano dietro, da cui possiamo ricostruire di cos’è fatta la stella.

fraunhofer_lines

La luce solare, scomposta nei suoi colori, con le bande nere (o “linee di Fraunhofer”) causate dagli elementi al suo interno. Via wikimedia.

Il prossimo passo fu capire come calcolare la temperatura di una stella dal colore della sua luce (più esattamente, dalle lunghezze d’onda). Tutto ciò che ha una temperatura—cioè tutto—riluce in un modo particolare a seconda di quanto è caldo. Serve la meccanica quantistica per capire come e perché, ma funziona: lo usiamo per i termometri a infrarossi.

Alla fine il Sole si è rivelato essere suppergiù nella media sia per temperatura che per dimensione e composizione. Comunque, rimaneva una stella speciale: era l’unica ad avere pianeti. Anche questo è cambiato. C’è voluto un po’, ma ora troviamo esopianeti (pianeti che orbitano altre stelle) a migliaia.

Il Sole è una semplice stella, quindi. Abbiamo ragionato sull’universo l’abbiamo guardato, e con così poco abbiamo capito questa cosa così violentemente controintuitiva. Non conosciamo nessuna stella che ospiti qualcosa con abilità del genere. E questo credo sia piuttosto speciale.

298013

 

Foto copertina: CC0 Mayur Gala, via unsplash.com

Per saperne di più
  • Bessel è stato il primo a misurare la distanza da una stella per un motivo: era davvero difficile. Su wikipedia trovate una spiegazione del metodo ingegnoso che ha usato.
  • La meccanica quantistica non spiega proprio come il bagliore delle cose: in realtà è nata cercando di risolvere quel problema. Questo video di PhysicsGirl spiega come

Come si cercano le particelle

Magari avete sentito le notizie di quest’estate che il CERN non ha poi trovato la particella che si pensava avessero trovato. E magari vi ha fatto realizzare che il processo con cui “si trovano le particelle” non è per niente chiaro. Fortunatamente Abstrusegoose (riposi in pace) qualche tempo fa fece una bellissima striscia, piuttosto illuminante su come funziona la fisica delle alte energie.

L'analogia funziona anche con le rane. O meglio, non funziona. Comunque, non provateci per favore! credit: abstrusegoose.com

Come dice abstrusegoose, gli ex fisici delle particelle sono i peggiori biologi. L’analogia funziona anche con le rane. O meglio, non funziona. Comunque non provateci per favore! credit: abstrusegoose.com

Anche se un po’ vago sui dettagli, il processo è più o meno quello*, solo che si usano protoni (o altre particelle) al posto delle rane. In breve: li si spara fortissimo uno contro l’altro e si vede cosa ne esce.

Protoni e rane, però, hanno alcune fondamentali differenze, e due in particolare sono cruciali per noi. Primo: un protone non è un oggetto solido, non ha nulla “dentro” (e non ha un “dentro”, se è per quello). Secondo, rimettendo insieme i pezzi delle rane, otterremo di nuovo le due rane. Nulla meno (se siamo molto bravi a raccogliere i pezzi), ma sicuramente nulla di più. Per le particelle è tutta un’altra storia.

Gli acceleratori come LHC spingono le particelle quasi alla velocità della luce. Siccome la massa può diventare energia e viceversa, l’inimmaginabile energia liberata quando le particelle si scontrano può produrre ogni sorta di cose nuove ed esotiche che non c’erano prima. E può avere molta più massa di quella con cui siamo partiti: più veloci sono i nostri protoni, più massa ha la roba che esce. Il bosone di Higgs, ad esempio, è stato scoperto scontrando coppie di protoni, ma ha 60 volte più massa. Sarebbe come se, scontrando due rane, uscisse qualcosa delle dimensioni di un bambino delle elementari.

Tuttavia, queste particelle formate nella collisione non si possono vedere direttamente, in parte perché restano lì davvero pochissimo. Mooolto meno di un miliardesimo di secondo dopo la collisione sono già decadute, sparando fotoni e particelle più piccole in ogni direzione.

Avete presente quelle belle immagini con tutte le linee colorate che pubblicano i laboratori di fisica delle particelle? Ecco, quelle linee sono la traiettoria di questi detriti sparati fuori.

alice-proton-lead

I prodotti di una collisione nell’esperimento ALICE del CERN. Credit: home.cern

Quella è la roba che i fisici studiano davvero. Ci sono rivelatori tutto intorno al punto della collisione per misurare e tracciare e contare quanto di quale tipo di ciarpame subatomico è uscito e dov’è andato. Sapendo come decadono varie particelle, gli scienziati setacciano i dati e risalgono a cosa è successo subito dopo la collisione.

Quando trovano troppo o troppo poco di qualcosa inizia il divertimento, perché potrebbe significare che si era formata una nuova particella sconosciuta. Perciò tutti si erano agitati per i dati del CERN lo scorso anno. Oppure potrebbe significare che i modelli che ci dicono cosa aspettarci dai decadimenti sono sbagliati, che comunque è interessante. Oppure potrebbe voler dire che si sono formate le solite particelle e, per caso, sono decadute più spesso in un modo piuttosto che in un altro. Questo è quello che è poi successo coi dati del CERN: quando hanno analizzato più collisioni, la media è tornata dove ci si aspettava. Niente nuova particella.

Per saperne di più
  • Sotto sotto, la massa è più complicata della quantità di materia in un oggetto. Magari ne scriverò. Per ora, andatevi a vedere questo bel video con Sean Carrol che esplora questi aspetti
  • Come si fa a vedere i prodotti della collisione: il CERN spiega come funzionano i suoi rivelatori

Foto copertina: LHC, CC-BY-NC-ND UCI UC Irvine via Flickr. Some rights reserved.

*Osservazione del fisico pedante: l’acceleratore di rane non è un collider e LHC non funziona proprio così. Ma va anche bene così: sta pur sempre usando delle rane!

Che diavolo è la fMRI?

Alcune parti del cervello si “accendono” quando proviamo certe emozioni, quando ascoltiamo la musica, o quando risolviamo problemi matematici. Vi sarà sicuramente capitato di imbattervi in notizie simili, visto quanto spesso finiscono sulla stampa. La tecnica che si usa per questi studi (e in tantissimi altri di neuroscienze) si chiama risonanza magnetica funzionale, o fMRI (functional Magnetic Resonance Imaging), che è una gran figata, ma sembra anche avere qualche problema. Prossimamente se ne sentirà parlare abbastanza, quindi vale la pena di capire cos’è.

Una macchina per la risonanza magnetica. CC-BY-NC Penn State, via Flickr.

Cominciamo dalle basi. La risonanza magnetica (quella che ci fanno se ci facciamo male al ginocchio, per capirci) sfrutta campi magnetici e la risonanza, cioè reazioni inusuali di un oggetto o materiale ad uno stimolo di una particolare frequenza.

Il classico esempio è spingere qualcuno su un’altalena: spingendo ogni volta che l’altalena arriva a fine corsa, la facciamo più in alto che spingendo in momenti a caso. Semplificando (molto), la risonanza magnetica usa onde radio per spingere atomi di idrogeno, che abbondano in tessuti ricchi di acqua o grasso, tipo il cervello.

I nuclei di idrogeno hanno spin, una proprietà che li fa reagire ai campi magnetici come una bussola. La macchina per la risonanza magnetica applica un forte campo magnetico, allineando gli spin degli atomi, che poi colpisce brevemente con un’onda radio. Se la sua frequenza è quella giusta (chiamata frequenza di risonanza), l’onda rovescia lo spin di alcuni atomi (non gli atomi stessi però!).

Appena l’impulso termina, tutto torna com’era e gli atomi rilasciano un po’ di energia. Registrando queste emissioni con un’antenna si possono distinguere tessuti con diverse quantità d’acqua, ad esempio, diverse parti del cervello, generandone un'immagine.

Schema semplificato del funzionamento della risonanza magnetica. Gli atomi (palline rosse) si allineano al campo magnetico verde, finché l’onda elettromagnetica viola non li investe, rovesciando i poli di alcuni. Appena possono, gli atomi tornano al loro stato iniziale e rilasciano l’energia, che viene registrata dall’antenna blu. Credit: howequipmentworks.com

Per la fMRI si registrano velocemente tantissime di queste immagini. Analizzandole tutte è possibile capire quali parti del cervello sono più attive in ogni momento perché sono quelle dove viene indirizzato più sangue ossigenato, che reagisce alla risonanza in modo leggermente diverso da quello che sta lasciando il cervello.

L’operazione, francamente geniale, richiede un sacco di analisi statistica. Secondo alcuni studi recenti, servirebbe molta cautela e un intenso scrutinio dei software che fanno questa parte del lavoro. In uno studio, ad esempio, un salmone morto sembrava reagire quando gli venivano mostrate foto di persone.

Non vuol dire che la tecnica non sia valida, ma solo che bisogna stare attenti a cosa succede. Questi studi sono importantissimi per la ricerca, perché ci fanno identificare problemi ed errori.

Solo così possiamo essere sicuri di quello che stiamo facendo e di sfruttare appieno i risultati di tecniche spettacolari come la fMRI.

Per saperne di più

 

Foto copertina: SumaLateral Whole Brain Image, CC-BY NIH Image Gallery, via Flickr. Some rights reserved.

Quante volte si può piegare un foglio di carta?

Qualche giorno fa mi sono imbattuto in un divertente articolo. Spinto dalla curiosità, sono finito a scoprire l’origine di una leggenda metropolitana e perfino ad esplorare il significato di essere un fisico.

L’articolo parlava di una leggenda metropolitana (è impossibile piegare un foglio più di 7 volte) e di un simpatico signore finlandese che ha fatto questo popolare video su YouTube in cui l’ha messa alla prova.

Alla settima piega, la carta collassa spettacolarmente, perché cede allo sforzo meccanico. Finché si fa una piega sola, infatti, sembra di ottenere un nuovo foglio grande metà e spesso il doppio di prima. Ma è chiaramente solo un’approssimazione: ogni piega in realtà è un arco, e la carta deve fare il giro tutto attorno agli strati in mezzo.

Il numero di strati aumenta esponenzialmente ad ogni piega. Prima sono 2, poi 4, 8, 16 e così via, alla settima piega, la carta più esterna deve aggirare più di 120 strati. A quel punto lo sforzo sulla carta è insostenibile, e la fa collassare.

Fogli più grandi danno più spazio alla piega, sforzandola meno, evitando il problema. Anni fa quelli di MythBusters hanno preso un foglio di 5000mq e sono arrivati a 11 pieghe.

Il record è di una ragazza che è arrivata a 12 con un foglio enorme e sottilissimo. Personalmente, però, non ero soddisfatto della risposta: i fogli giganti non valgono!

In fisica, però, si possono ignorare alcune regole, come la resistenza meccanica del foglio, per rispondere a domande più grandi. Tipo: quante volte potrei piegare un foglio A4 indistruttibile, se potessi fare sempre pieghe perfette come la prima?

Facendo due conti veloci ho trovato che, piegando sempre lungo il margine più lungo a disposizione, potrei farne al massimo… 7 (ecco da dove viene!). A quel punto avrei per le mani una specie di cubetto di carta di pochi centimetri, che non cambia più piegandolo a quel modo.

Il massimo che ho trovato, però, è 22. Per averlo bisogna piegare sempre lungo due direzioni, tipo la lunghezza e larghezza iniziali, fino ad arrivare ad un oggetto largo quanto lo spessore iniziale del foglio (e spesso qualche centinaio di metri).

Posso piegare ancora un lato così piccolo? Se sì, che fare quando prende le dimensioni di un atomo? o di un protone? L’idea stessa di “piega” perde senso.

La questione, allora, diventa quali regole sia ragionevole ignorare.

Questa è l’arte di fare fisica: decidere di volta in volta quali regole siano importanti e quali invece si possano ignorare. Trovare le approssimazioni ragionevoli per rispondere ad una domanda, almeno sulla carta.

 

Foto copertina: CC0 Counselling, via pixabay.com

PS: Per chi vuole darci un’occhiata, ho caricato un supplemento con un paio di dettagli in più sui conti.