Alcune parti del cervello si “accendono” quando proviamo certe emozioni, quando ascoltiamo la musica, o quando risolviamo problemi matematici. Vi sarà sicuramente capitato di imbattervi in notizie simili, visto quanto spesso finiscono sulla stampa. La tecnica che si usa per questi studi (e in tantissimi altri di neuroscienze) si chiama risonanza magnetica funzionale, o fMRI (functional Magnetic Resonance Imaging), che è una gran figata, ma sembra anche avere qualche problema. Prossimamente se ne sentirà parlare abbastanza, quindi vale la pena di capire cos’è.

Una macchina per la risonanza magnetica. CC-BY-NC Penn State, via Flickr.

Cominciamo dalle basi. La risonanza magnetica (quella che ci fanno se ci facciamo male al ginocchio, per capirci) sfrutta campi magnetici e la risonanza, cioè reazioni inusuali di un oggetto o materiale ad uno stimolo di una particolare frequenza.

Il classico esempio è spingere qualcuno su un’altalena: spingendo ogni volta che l’altalena arriva a fine corsa, la facciamo più in alto che spingendo in momenti a caso. Semplificando (molto), la risonanza magnetica usa onde radio per spingere atomi di idrogeno, che abbondano in tessuti ricchi di acqua o grasso, tipo il cervello.

I nuclei di idrogeno hanno spin, una proprietà che li fa reagire ai campi magnetici come una bussola. La macchina per la risonanza magnetica applica un forte campo magnetico, allineando gli spin degli atomi, che poi colpisce brevemente con un’onda radio. Se la sua frequenza è quella giusta (chiamata frequenza di risonanza), l’onda rovescia lo spin di alcuni atomi (non gli atomi stessi però!).

Appena l’impulso termina, tutto torna com’era e gli atomi rilasciano un po’ di energia. Registrando queste emissioni con un’antenna si possono distinguere tessuti con diverse quantità d’acqua, ad esempio, diverse parti del cervello, generandone un'immagine.

Schema semplificato del funzionamento della risonanza magnetica. Gli atomi (palline rosse) si allineano al campo magnetico verde, finché l’onda elettromagnetica viola non li investe, rovesciando i poli di alcuni. Appena possono, gli atomi tornano al loro stato iniziale e rilasciano l’energia, che viene registrata dall’antenna blu. Credit: howequipmentworks.com

Per la fMRI si registrano velocemente tantissime di queste immagini. Analizzandole tutte è possibile capire quali parti del cervello sono più attive in ogni momento perché sono quelle dove viene indirizzato più sangue ossigenato, che reagisce alla risonanza in modo leggermente diverso da quello che sta lasciando il cervello.

L’operazione, francamente geniale, richiede un sacco di analisi statistica. Secondo alcuni studi recenti, servirebbe molta cautela e un intenso scrutinio dei software che fanno questa parte del lavoro. In uno studio, ad esempio, un salmone morto sembrava reagire quando gli venivano mostrate foto di persone.

Non vuol dire che la tecnica non sia valida, ma solo che bisogna stare attenti a cosa succede. Questi studi sono importantissimi per la ricerca, perché ci fanno identificare problemi ed errori.

Solo così possiamo essere sicuri di quello che stiamo facendo e di sfruttare appieno i risultati di tecniche spettacolari come la fMRI.

Per saperne di più

 

Foto copertina: SumaLateral Whole Brain Image, CC-BY NIH Image Gallery, via Flickr. Some rights reserved.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *