Ogni elettrone ha uno spin, una specie di bussola interna, che (semplificando un sacco) punta “su” o “giù”. Sparando dei neutroni contro un materiale e vedendo come rimbalzano, si può capire come interagiscono con lo spin degli elettroni e, quindi, come sono orientati gli spin.

In un esperimento con un particolare materiale (il cloruro di rutenio) sembra che gli spin puntino disordinatamente un po’ ovunque.

Un’interpretazione artistica del liquido di spin. In questo stato, gli elettroni sono orientati in modo disordinato, come le molecole di acqua in un bicchiere. Credit: Francis Pratt / ISIS / STFC

Questo nuovo stato, detto liquido di spin, appare se gli elettroni si “spezzano” in particelle: i fermioni di Majorana.

C’è solo un piccolo problema: gli elettroni non possono spaccarsi in parti perché sono un blocco unico. Come fanno allora i fermioni di Majorana ad esistere?

Strettamente parlando, non esistono. Gli elettroni non si spezzano davvero, però si comportano come se lo facessero. Perciò i fermioni di Majorana sono chiamati “quasi-particelle”: entità utili da includere nei modelli, ma impossibili da trovare in natura.

I fermioni di Majorana non erano mai stati osservati prima, ma hanno importanti applicazioni per i superconduttori e i computer quantistici.

 

Foto copertina: CC0 ikinitip, via pixabay.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *